Skip to main content
Log in

Orbifold equivalence for finite density QCD and effective field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the large N c limit, some apparently different gauge theories turn out to be equivalent due to large N c orbifold equivalence. We use effective field theory techniques to explore orbifold equivalence, focusing on the specific case of a recently discovered relation between an SO(2N c ) gauge theory and QCD. The equivalence to QCD has been argued to hold at finite baryon chemical potential, μ B , so long as one deforms the SO(2N c ) theory by certain “double-trace” terms. The deformed SO(2N c ) theory can be studied without a sign problem in the chiral limit, in contrast to SU(N c ) QCD at finite μ B . The purpose of the double-trace deformation in the SO(2N c ) theory is to prevent baryon number symmetry from breaking spontaneously at finite density, which is necessary for the equivalence to large N c QCD to be valid. The effective field theory analysis presented here clarifies the physical significance of double-trace deformations, and strongly supports the proposed equivalence between the deformed SO(2N c ) theory and large N c QCD at finite density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. R.F. Dashen and A.V. Manohar, Baryon-pion couplings from large-N c QCD, Phys. Lett. B 315 (1993) 425 [hep-ph/9307241] [SPIRES].

    ADS  Google Scholar 

  4. R.F. Dashen, E.E. Jenkins and A.V. Manohar, The 1/N c expansion for baryons, Phys. Rev. D 49 (1994) 4713 [hep-ph/9310379] [SPIRES].

    ADS  Google Scholar 

  5. E.E. Jenkins and R.F. Lebed, Baryon mass splittings in the 1/N c expansion, Phys. Rev. D 52 (1995) 282 [hep-ph/9502227] [SPIRES].

    ADS  Google Scholar 

  6. A. Cherman, T.D. Cohen and R.F. Lebed, All you need is N: baryon spectroscopy in two large-N limits, Phys. Rev. D 80 (2009) 036002 [arXiv:0906.2400] [SPIRES].

    ADS  Google Scholar 

  7. R.F. Lebed and R.H. TerBeek, Baryon magnetic moments in alternate 1/N c expansions, Phys. Rev. D 83 (2011) 016009 [arXiv:1011.3237] [SPIRES].

    ADS  Google Scholar 

  8. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  10. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. S. Kachru and E. Silverstein, 4 d conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Schmaltz, Duality of non-supersymmetric large-N gauge theories, Phys. Rev. D 59 (1999) 105018 [hep-th/9805218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. M.J. Strassler, On methods for extracting exact non-perturbative results in non-supersymmetric gauge theories, hep-th/0104032 [SPIRES].

  15. A. Armoni, M. Shifman and G. Veneziano, Exact results in non-supersymmetric large-N orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Kovtun, M. Ünsal and L.G. Yaffe, Necessary and sufficient conditions for non-perturbative equivalences of large-N c orbifold gauge theories, JHEP 07 (2005) 008 [hep-th/0411177] [SPIRES].

    Article  ADS  Google Scholar 

  17. P. Kovtun, M. Ünsal and L.G. Yaffe, Non-perturbative equivalences among large-N c gauge theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034 [hep-th/0311098] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Armoni, M. Shifman and G. Veneziano, From super-Yang-Mills theory to QCD: planar equivalence and its implications, hep-th/0403071 [SPIRES].

  19. T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [SPIRES].

    Article  ADS  Google Scholar 

  20. G. Bhanot, U.M. Heller and H. Neuberger, The quenched Eguchi-Kawai model, Phys. Lett. B 113 (1982) 47 [SPIRES].

    ADS  Google Scholar 

  21. A. Gonzalez-Arroyo and M. Okawa, The twisted Eguchi-Kawai model: a reduced model for large-N lattice gauge theory, Phys. Rev. D 27 (1983) 2397 [SPIRES].

    ADS  Google Scholar 

  22. P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [SPIRES].

    Article  ADS  Google Scholar 

  23. D. Simic and M. Ünsal, Deconfinement in Yang-Mills theory through toroidal compactification with deformation, arXiv:1010.5515 [SPIRES].

  24. R. Narayanan and H. Neuberger, Large-N reduction in continuum, Phys. Rev. Lett. 91 (2003) 081601 [hep-lat/0303023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Cherman, M. Hanada and D. Robles-Llana, Orbifold equivalence and the sign problem at finite baryon density, Phys. Rev. Lett. 106 (2011) 091603 [arXiv:1009.1623] [SPIRES].

    Article  ADS  Google Scholar 

  26. K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, in At the frontier of particle physics. Handbook of QCD, M. Shifman ed., World Scientific, Singapore (2001) [hep-ph/0011333] [SPIRES].

    Google Scholar 

  27. M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].

    Article  ADS  Google Scholar 

  28. E. Shuster and D.T. Son, On finite-density QCD at large-N c , Nucl. Phys. B 573 (2000) 434 [hep-ph/9905448] [SPIRES].

    Article  ADS  Google Scholar 

  29. B.-Y. Park, M. Rho, A. Wirzba and I. Zahed, Dense QCD: overhauser or BCS pairing?, Phys. Rev. D 62 (2000) 034015 [hep-ph/9910347] [SPIRES].

    ADS  Google Scholar 

  30. M.T. Frandsen, C. Kouvaris and F. Sannino, Corrigan-Ramond extension of QCD at nonzero baryon density, Phys. Rev. D 74 (2006) 117503 [hep-ph/0512153] [SPIRES].

    ADS  Google Scholar 

  31. M.I. Buchoff, A. Cherman and T.D. Cohen, Color superconductivity at large-N: a new hope, Phys. Rev. D 81 (2010) 125021 [arXiv:0910.0470] [SPIRES].

    ADS  Google Scholar 

  32. L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large-N c , Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [SPIRES].

    ADS  Google Scholar 

  33. G. Torrieri and I. Mishustin, The nuclear liquid-gas phase transition at large-N c in the Van der Waals approximation, Phys. Rev. C 82 (2010) 055202 [arXiv:1006.2471] [SPIRES].

    ADS  Google Scholar 

  34. D. Tong, Comments on condensates in non-supersymmetric orbifold field theories, JHEP 03 (2003) 022 [hep-th/0212235] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Armoni, A. Gorsky and M. Shifman, Spontaneous Z 2 symmetry breaking in the orbifold daughter of N = 1 super-Yang-Mills theory, fractional domain walls and vacuum structure, Phys. Rev. D 72 (2005) 105001 [hep-th/0505022] [SPIRES].

    ADS  Google Scholar 

  36. P. Kovtun, M. Ünsal and L.G. Yaffe, Can large-N c equivalence between supersymmetric Yang-Mills theory and its orbifold projections be valid?, Phys. Rev. D 72 (2005) 105006 [hep-th/0505075] [SPIRES].

    ADS  Google Scholar 

  37. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [SPIRES].

    ADS  Google Scholar 

  38. D. Weingarten, Mass inequalities for QCD, Phys. Rev. Lett. 51 (1983) 1830 [SPIRES].

    Article  ADS  Google Scholar 

  39. S. Nussinov, Baryon meson mass inequality, Phys. Rev. Lett. 51 (1983) 2081 [SPIRES].

    Article  ADS  Google Scholar 

  40. E. Witten, Some inequalities among hadron masses, Phys. Rev. Lett. 51 (1983) 2351 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. J.B. Kogut, M.A. Stephanov and D. Toublan, On two-color QCD with baryon chemical potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346] [SPIRES].

    ADS  Google Scholar 

  42. G.M. Cicuta, Topological expansion for SO(N) and Sp(2 N) gauge theories, Nuovo Cim. Lett. 35 (1982) 87 [SPIRES].

    Article  MathSciNet  Google Scholar 

  43. C. Lovelace, Universality at large-N, Nucl. Phys. B 201 (1982) 333 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. G. ’t Hooft et al. eds., Recent developments in gauge theories, lectures given at the Cargèse Summer Inst., Aug 26–Sept 8 1979, Plenum Press, New York U.S.A. (1980) [SPIRES].

    Google Scholar 

  45. S. Coleman, Aspects of symmetry, Cambridge University Press, Cambridge U.K. (1988).

    Google Scholar 

  46. T.D. Cohen, Large-N c continuum reduction and the thermodynamics of QCD, Phys. Rev. Lett. 93 (2004) 201601 [hep-ph/0407306] [SPIRES].

    Article  ADS  Google Scholar 

  47. S.R. Coleman and E. Witten, Chiral symmetry breakdown in large-N chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys. B 175 (1980) 197 [SPIRES].

    Article  ADS  Google Scholar 

  49. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  50. E. Witten, Large-N chiral dynamics, Ann. Phys. 128 (1980) 363 [SPIRES].

    Article  ADS  Google Scholar 

  51. R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [SPIRES].

    Article  ADS  Google Scholar 

  52. C.W. Bernard, T. Draper, A. Soni, H.D. Politzer and M.B. Wise, Application of chiral perturbation theory to K → 2π decays, Phys. Rev. D 32 (1985) 2343 [SPIRES].

    ADS  Google Scholar 

  53. O. Bär, G. Rupak and N. Shoresh, Chiral perturbation theory at O(a 2) for lattice QCD, Phys. Rev. D 70 (2004) 034508 [hep-lat/0306021] [SPIRES].

    ADS  Google Scholar 

  54. B.C. Tiburzi, Baryon masses at O(a 2) in chiral perturbation theory, Nucl. Phys. A 761 (2005) 232 [hep-lat/0501020] [SPIRES].

    ADS  Google Scholar 

  55. C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [SPIRES].

    Article  ADS  Google Scholar 

  57. C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [SPIRES].

    Article  ADS  Google Scholar 

  58. R. Aloisio, V. Azcoiti, G. Di Carlo, A. Galante and A.F. Grillo, Probability distribution function of the diquark condensate in two colours QCD, Nucl. Phys. B 606 (2001) 322 [hep-lat/0011079] [SPIRES].

    Article  ADS  Google Scholar 

  59. S. Aoki, New phase structure for lattice QCD with Wilson fermions, Phys. Rev. D 30 (1984) 2653 [SPIRES].

    ADS  Google Scholar 

  60. S.R. Sharpe and R.L. Singleton Jr., Spontaneous flavor and parity breaking with Wilson fermions, Phys. Rev. D 58 (1998) 074501 [hep-lat/9804028] [SPIRES].

    ADS  Google Scholar 

  61. S. Morrison and S. Hands, Two colours QCD at nonzero chemical potential, hep-lat/9902012 [SPIRES].

  62. S. Hands and S. Morrison, Diquark condensation in dense matter: a lattice perspective, hep-lat/9905021 [SPIRES].

  63. T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B 169 (1980) 103 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Cherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherman, A., Tiburzi, B.C. Orbifold equivalence for finite density QCD and effective field theory. J. High Energ. Phys. 2011, 34 (2011). https://doi.org/10.1007/JHEP06(2011)034

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)034

Keywords

Navigation