Skip to main content
Log in

Towards holographic walking from \( \mathcal{N} = 4 \) super Yang-Mills

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose that a holographic description of ‘walking’ behavior, namely quasi-conformal dynamics relevant for technicolor models, can be obtained from relevant deformations of \( \mathcal{N} = 4 \) super Yang-Mills. We consider deformations which drive the theory close to the \( \mathcal{N} = 1 \) Leigh-Strassler fixed point, eventually deviating from it in the deep IR. We use the Pilch-Warner dual supergravity description of the flow between the \( \mathcal{N} = 4 \) and the \( \mathcal{N} = 1 \) fixed points to focus on observables that only require knowledge of the walking region. These include large anomalous dimensions of quark bilinear operators, which we study via probe D7-branes. We also make a first attempt at describing the theory beyond the walking region by introducing an infrared cut-off, in the spirit of hard-wall models. In this case we find a light, dilaton-like scalar state, but whether this mode persists in the exact theory remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [SPIRES].

    ADS  Google Scholar 

  2. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

    Article  ADS  Google Scholar 

  3. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  4. R.S. Chivukula, Technicolor and compositeness, hep-ph/0011264 [SPIRES].

  5. K. Lane, Two lectures on technicolor, hep-ph/0202255 [SPIRES].

  6. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235

    Article  ADS  Google Scholar 

  7. A. Martin, Technicolor Signals at the LHC, arXiv:0812.1841 [SPIRES].

  8. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Google Scholar 

  9. M. Piai, Lectures on walking technicolor, holography and gauge/gravity dualities, Adv. High Energy Phys. 2010 (2010) 464302 [arXiv:1004.0176] [SPIRES].

    Google Scholar 

  10. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  11. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  12. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].

    ADS  Google Scholar 

  13. W.A. Bardeen, C.N. Leung and S.T. Love, The Dilaton and Chiral Symmetry Breaking, Phys. Rev. Lett. 56 (1986) 1230 [SPIRES].

    Article  ADS  Google Scholar 

  14. M. Bando, K.-i. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308 [SPIRES].

    ADS  Google Scholar 

  15. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

    Article  ADS  Google Scholar 

  16. B. Holdom and J. Terning, A Light Dilaton in Gauge Theories?, Phys. Lett. B 187 (1987) 357 [SPIRES].

    ADS  Google Scholar 

  17. B. Holdom and J. Terning, No Light Dilaton In Gauge Theories, Phys. Lett. B 200 (1988) 338 [SPIRES].

    ADS  Google Scholar 

  18. W.D. Goldberger, B. Grinstein and W. Skiba, Light scalar at LHC: the Higgs or the dilaton?, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [SPIRES].

    ADS  Google Scholar 

  20. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].

    ADS  Google Scholar 

  21. T. Appelquist and Y. Bai, A Light Dilaton in Walking Gauge Theories, Phys. Rev. D 82 (2010) 071701 [arXiv:1006.4375] [SPIRES].

    ADS  Google Scholar 

  22. L. Vecchi, Technicolor at Criticality, arXiv:1007.4573 [SPIRES].

  23. K. Haba, S. Matsuzaki and K. Yamawaki, Holographic Techni-dilaton, Phys. Rev. D 82 (2010) 055007 [arXiv:1006.2526] [] [SPIRES].

    ADS  Google Scholar 

  24. M. Hashimoto and K. Yamawaki, Techni-dilaton at Conformal Edge, Phys. Rev. D 83 (2011) 015008 [arXiv:1009.5482] [SPIRES].

    ADS  Google Scholar 

  25. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [SPIRES].

    ADS  Google Scholar 

  26. O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  28. L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189] [SPIRES].

    ADS  Google Scholar 

  29. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  30. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  32. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Núñez, I. Papadimitriou and M. Piai, Walking Dynamics from String Duals, Int. J. Mod. Phys. A 25 (2010) 2837 [arXiv:0812.3655] [SPIRES].

    ADS  Google Scholar 

  34. C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of W alking and Flavored Systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [SPIRES].

    ADS  Google Scholar 

  35. D. Elander, C. Núñez and M. Piai, A light scalar from walking solutions in gauge-string duality, Phys. Lett. B 686 (2010) 64 [arXiv:0908.2808] [SPIRES].

    ADS  Google Scholar 

  36. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Bianchi, M. Prisco and W. Mueck, New results on holographic three-point functions, JHEP 11 (2003) 052 [hep-th/0310129] [SPIRES].

    Article  ADS  Google Scholar 

  38. M. Berg, M. Haack and W. Mueck, Bulk dynamics in confining gauge theories, Nucl. Phys. B 736 (2006) 82 [hep-th/0507285] [SPIRES].

    Article  ADS  Google Scholar 

  39. M. Berg, M. Haack and W. Mueck, Glueballs vs. gluinoballs: Fluctuation spectra in non-AdS/non-CFT, Nucl. Phys. B 789 (2008) 1 [hep-th/0612224] [SPIRES].

    Article  ADS  Google Scholar 

  40. R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. A. Karch, D. Lüst and A. Miemiec, New N = 1 superconformal field theories and their supergravity description, Phys. Lett. B 454 (1999) 265 [hep-th/9901041] [SPIRES].

    ADS  Google Scholar 

  43. K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [SPIRES].

    MathSciNet  Google Scholar 

  44. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  45. R. Donagi and E. Witten, Supersymmetric Yang-Mills Theory And Integrable Systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills theory, JHEP 07 (1999) 021 [hep-th/9906011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. N. Dorey and S. Prem Kumar, Softly-broken N = 4 supersymmetry in the large-N limit, JHEP 02 (2000) 006 [hep-th/0001103] [SPIRES].

    Article  ADS  Google Scholar 

  48. O. Aharony, N. Dorey and S. Prem Kumar, New modular invariance in the N = 1* theory, operator mixings and supergravity singularities, JHEP 06 (2000) 026 [hep-th/0006008] [SPIRES].

    Article  ADS  Google Scholar 

  49. N. Dorey, T.J. Hollowood, S. Prem Kumar and A. Sinkovics, Exact superpotentials from matrix models, JHEP 11 (2002) 039 [hep-th/0209089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. H. Boschi-Filho and N.R.F. Braga, Gauge/string duality and scalar glueball mass ratios, JHEP 05 (2003) 009 [hep-th/0212207] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].

    Article  ADS  Google Scholar 

  53. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].

    ADS  Google Scholar 

  54. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  55. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  56. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  57. S. Dimopoulos and L. Susskind, Mass W ithout Scalars, Nucl. Phys. B 155 (1979) 237 [SPIRES].

    Article  ADS  Google Scholar 

  58. E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [SPIRES].

    ADS  Google Scholar 

  59. T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [SPIRES].

    ADS  Google Scholar 

  60. T. Appelquist, M. Piai and R. Shrock, Lepton dipole moments in extended technicolor models, Phys. Lett. B 593 (2004) 175 [hep-ph/0401114] [SPIRES].

    ADS  Google Scholar 

  61. T. Appelquist, M. Piai and R. Shrock, Quark dipole operators in extended technicolor models, Phys. Lett. B 595 (2004) 442 [hep-ph/0406032] [SPIRES].

    ADS  Google Scholar 

  62. T. Appelquist, N.D. Christensen, M. Piai and R. Shrock, Flavor-changing processes in extended technicolor, Phys. Rev. D 70 (2004) 093010 [hep-ph/0409035] [SPIRES].

    ADS  Google Scholar 

  63. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies from Slowly Running Couplings in Technicolor Theories, Phys. Rev. D 36 (1987) 568 [SPIRES].

    ADS  Google Scholar 

  64. T. DeGrand, Lattice studies of QCD-like theories with many fermionic degrees of freedom, arXiv:1010.4741 [SPIRES].

  65. P.C. Argyres, K.A. Intriligator, R.G. Leigh and M.J. Strassler, On inherited duality in N = 1 D = 4 supersymmetric gauge theories, JHEP 04 (2000) 029 [hep-th/9910250] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. C.V. Johnson, K.J. Lovis and D.C. Page, Probing some N = 1 AdS/CFT RG flows, JHEP 05 (2001) 036 [hep-th/0011166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. J. Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, hep-th/0003032 [SPIRES].

  70. O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [SPIRES].

    Google Scholar 

  74. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  75. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].

    Article  ADS  Google Scholar 

  76. K. Pilch and N.P. Warner, N = 1 supersymmetric solutions of IIB supergravity from Killing spinors, hep-th/0403005 [SPIRES].

  77. D. Elander and M. Piai, Light scalars from a compact fifth dimension, JHEP 01 (2011) 026 [arXiv:1010.1964] [SPIRES].

    Article  ADS  Google Scholar 

  78. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  79. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].

  80. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  81. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  83. L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189] [SPIRES].

    ADS  Google Scholar 

  84. J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [SPIRES].

  85. C.N. Gowdigere and N.P. Warner, Holographic Coulomb branch flows with N = 1 supersymmetry, JHEP 03 (2006) 049 [hep-th/0505019] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. A. Brandhuber and K. Sfetsos, Current correlators in the Coulomb branch of N = 4 SYM, JHEP 12 (2000) 014 [hep-th/0010048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  87. M. Bianchi, O. DeWolfe, D.Z. Freedman and K. Pilch, Anatomy of two holographic renormalization group flows, JHEP 01 (2001) 021 [hep-th/0009156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  88. S. Kuperstein and J. Sonnenschein, A New Holographic Model of Chiral Symmetry Breaking, JHEP 09 (2008) 012 [arXiv:0807.2897] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  89. L. Anguelova, Electroweak Symmetry Breaking from Gauge/Gravity Duality, Nucl. Phys. B 843 (2011) 429 [arXiv:1006.3570] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  90. R. Apreda, D.E. Crooks, N.J. Evans and M. Petrini, Confinement, glueballs and strings from deformed AdS, JHEP 05 (2004) 065 [hep-th/0308006] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  91. M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. N.J. Vilenkin, Translations of Mathematical Monographs. Vol. 22: Special Functions and the Theory of Group Representations, American Mathematical Society, Princeton U.S.A. (1968).

    Google Scholar 

  93. K. Zoubos, A conformally invariant holographic two-point function on the Berger sphere, JHEP 01 (2005) 031 [hep-th/0403292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prem Kumar.

Additional information

ArXiv ePrint: 1012.4678

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prem Kumar, S., Mateos, D., Paredes, A. et al. Towards holographic walking from \( \mathcal{N} = 4 \) super Yang-Mills. J. High Energ. Phys. 2011, 8 (2011). https://doi.org/10.1007/JHEP05(2011)008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)008

Keywords

Navigation