Skip to main content
Log in

Aspects of the BMS/CFT correspondence

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

After a review of symmetries and classical solutions involved in the AdS3/CFT2 correspondence, we apply a similar analysis to asymptotically flat spacetimes at null infinity in 3 and 4 dimensions. In the spirit of two dimensional conformal field theory, the symmetry algebra of asymptotically flat spacetimes at null infinity in 4 dimensions is taken to be the semi-direct sum of supertranslations with infinitesimal local conformal transformations and not, as usually done, with the Lorentz algebra. As a first application, we derive how the symmetry algebra is realized on solution space. In particular, we work out the behavior of Bondi’s news tensor, mass and angular momentum aspects under local conformal transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. M. Henneaux, Asymptotically anti-de Sitter universes in d = 3, 4 and higher dimensions, in proceedings of the Fourth Marcel Grossmann Meeting on General Relativity, Rome (1985), R. Ruffini ed., Elsevier Science Publishers B.V. (1986) pg. 959.

  5. H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [SPIRES].

    ADS  Google Scholar 

  6. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, arXiv:0909.2617 [SPIRES].

  9. G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [Erratum ibid. 24 (2007) 3139] [gr-qc/0610130] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A. Ashtekar, J. Bicak and B.G. Schmidt, Behavior of Einstein-Rosen waves at null infinity, Phys. Rev. D 55 (1997) 687 [gr-qc/9608041] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    ADS  Google Scholar 

  14. S. Carlip, The statistical mechanics of the (2+1)-dimensional black hole, Phys. Rev. D 51 (1995) 632 [gr-qc/9409052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. S.N. Solodukhin, Conformal description of horizon’s states, Phys. Lett. B 454 (1999) 213 [hep-th/9812056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. M.-I. Park and J. Ho, Comments on ’Black hole entropy from conformal field theory in any dimension’, Phys. Rev. Lett. 83 (1999) 5595 [hep-th/9910158] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. M.-I. Park, Hamiltonian dynamics of bounded spacetime and black hole entropy: canonical method, Nucl. Phys. B 634 (2002) 339 [hep-th/0111224] [SPIRES].

    Article  ADS  Google Scholar 

  20. I. Sachs and S.N. Solodukhin, Horizon holography, Phys. Rev. D 64 (2001) 124023 [hep-th/0107173] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. J.-i. Koga, Asymptotic symmetries on Killing horizons, Phys. Rev. D 64 (2001) 124012 [gr-qc/0107096] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S. Carlip, Near-horizon conformal symmetry and black hole entropy, Phys. Rev. Lett. 88 (2002) 241301 [gr-qc/0203001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Silva, Black hole entropy and thermodynamics from symmetries, Class. Quant. Grav. 19 (2002) 3947 [hep-th/0204179] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  24. G. Kang, J.-i. Koga and M.-I. Park, Near-horizon conformal symmetry and black hole entropy in any dimension, Phys. Rev. D 70 (2004) 024005 [hep-th/0402113] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. J.-i. Koga, Universal properties from local geometric structure of Killing horizon, Class. Quant. Grav. 24 (2007) 3067 [gr-qc/0604054] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. J.-i. Koga, Asymptotic symmetries on Kerr-Newman horizon without anomaly of diffeomorphism invariance, Class. Quant. Grav. 25 (2008) 045009 [gr-qc/0609120] [SPIRES].

    Article  ADS  Google Scholar 

  27. A. Ashtekar, Asymptotic quantization of the gravitational field, Phys. Rev. Lett. 46 (1981) 573 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Ashtekar, Asymptotic quantization: based on 1984 Naples lectures, Naples, Italy, Bibliopolis (1987) pg. 107, Monographs and textbooks in physical science, 2.

  29. S. Hollands and A. Ishibashi, Asymptotic flatness and Bondi energy in higher dimensional gravity, J. Math. Phys. 46 (2005) 022503 [gr-qc/0304054] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Hollands and A. Ishibashi, Asymptotic flatness at null infinity in higher dimensional gravity, hep-th/0311178 [SPIRES].

  31. S. Hollands and R.M. Wald, Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions, Class. Quant. Grav. 21 (2004) 5139 [gr-qc/0407014] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, arXiv:0909.0426 [SPIRES].

  33. L. Susskind, Holography in the flat space limit, hep-th/9901079 [SPIRES].

  34. J. Polchinski, S-matrices from AdS spacetime, hep-th/9901076 [SPIRES].

  35. J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [SPIRES].

    ADS  Google Scholar 

  36. G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically flat spacetimes via the BMS group, Nucl. Phys. B 674 (2003) 553 [hep-th/0306142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Arcioni and C. Dappiaggi, Holography in asymptotically flat space-times and the BMS group, Class. Quant. Grav. 21 (2004) 5655 [hep-th/0312186] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. S.N. Solodukhin, Reconstructing Minkowski space-time, hep-th/0405252 [SPIRES].

  39. M. Gary and S.B. Giddings, The flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. T. Banks, A critique of pure string theory: Heterodox opinions of diverse dimensions, hep-th/0306074 [SPIRES].

  41. C. Fefferman and C. Graham, Elie cartan et les mathématiques d’aujourd’hui, Conformal invariants, Astérisque (1985), pg. 95.

    Google Scholar 

  42. C. Graham and J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991) 186.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Bañados, Three-dimensional quantum geometry and black holes, in Trends in Theoretical Physics II, H. Falomir, R.E. Gamboa Saravi and F.A. Schaposnik eds., American Institute of Physics Conference Series, vol. 484 (1999) pg. 147.

  45. K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, math/9909042.

  47. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. M. Rooman and P. Spindel, Aspects of (2+1) dimensional gravity: AdS 3 asymptotic dynamics in the framework of Fefferman-Graham-Lee theorems, Annalen Phys. 9 (2000) 161 [hep-th/9911142] [SPIRES].

    Google Scholar 

  49. K. Bautier, F. Englert, M. Rooman and P. Spindel, The Fefferman-Graham ambiguity and AdS black holes, Phys. Lett. B 479 (2000) 291 [hep-th/0002156] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963) 66 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. L.A. Tamburino and J.H. Winicour, Gravitational fields in finite and conformal Bondi frames, Phys. Rev. 150 (1966) 1039 [SPIRES].

    Article  ADS  Google Scholar 

  53. J. Winicour, Logarithmic asymptotic flatness, Found. Phys. 15 (1985) 605.

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  56. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian formulation of general relativity, Ann. Phys. 88 (1974) 286 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. J.D. Brown and M. Henneaux, On the poisson brackets of differentiable generators in classical field theory, J. Math. Phys. 27 (1986) 489 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. E.T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 (1966) 863 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Penrose, Zero rest mass fields including gravitation: asymptotic behavior, Proc. Roy. Soc. Lond. A 284 (1965) 159 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. P.T. Chrusciel, M.A.H. MacCallum and D.B. Singleton, Gravitational waves in general relativity: 14. Bondi expansions and the polyhomogeneity of Scri, Proc. Roy. Soc. Lond. A 436 (1992) 299 [gr-qc/9305021] [SPIRES].

    ADS  Google Scholar 

  64. R. Geroch, Asymptotic structure of space-time, in Symposium on the asymptotic structure of space-time, P. Esposito and L. Witten eds., Plenum, New York, U.S.A. (1977) pg. 1.

  65. R. Wald, General relativity, The University of Chicago Press, Chicago, U.S.A. (1984).

    MATH  Google Scholar 

  66. E. Witten, Baryons and branes in anti de Sitter space, talk given at Strings ’98 http://online.kitp.ucsb.edu/online/strings98/witten/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Troessaert.

Additional information

ArXiv ePrint: 1001.1541

Research Director of the Fund for Scientific Research-FNRS.

Research Fellow of the Fund for Scientific Research-FNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnich, G., Troessaert, C. Aspects of the BMS/CFT correspondence. J. High Energ. Phys. 2010, 62 (2010). https://doi.org/10.1007/JHEP05(2010)062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)062

Keywords

Navigation