Skip to main content
Log in

Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Euclidean gravity method has been successful in computing logarithmic corrections to extremal black hole entropy in terms of low energy data, and gives results in perfect agreement with the microscopic results in string theory. Motivated by this success we apply Euclidean gravity to compute logarithmic corrections to the entropy of various non-extremal black holes in different dimensions, taking special care of integration over the zero modes and keeping track of the ensemble in which the computation is done. These results provide strong constraint on any ultraviolet completion of the theory if the latter is able to give an independent computation of the entropy of non-extremal black holes from microscopic description. For Schwarzschild black holes in four space-time dimensions the macroscopic result seems to disagree with the existing result in loop quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.N. Solodukhin, The Conical singularity and quantum corrections to entropy of black hole, Phys. Rev. D 51 (1995) 609 [hep-th/9407001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. S.N. Solodukhin, OnNongeometriccontribution to the entropy of black hole due to quantum corrections, Phys. Rev. D 51 (1995) 618 [hep-th/9408068] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D 51 (1995) 5352 [hep-th/9412161] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. N. Mavromatos and E. Winstanley, Aspects of hairy black holes in spontaneously broken Einstein Yang-Mills systems: Stability analysis and entropy considerations, Phys. Rev. D 53 (1996) 3190 [hep-th/9510007] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. R.B. Mann and S.N. Solodukhin, Conical geometry and quantum entropy of a charged Kerr black hole, Phys. Rev. D 54 (1996) 3932 [hep-th/9604118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. R.B. Mann and S.N. Solodukhin, Universality of quantum entropy for extreme black holes, Nucl. Phys. B 523 (1998) 293 [hep-th/9709064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. T. Govindarajan, R. Kaul and V. Suneeta, Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole, Class. Quant. Grav. 18 (2001) 2877 [gr-qc/0104010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. K.S. Gupta and S. Sen, Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach, Phys. Lett. B 526 (2002) 121 [hep-th/0112041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Medved, A Comment on black hole entropy or does nature abhor a logarithm?, Class. Quant. Grav. 22 (2005) 133 [gr-qc/0406044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203 [hep-th/0409024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Banerjee and B.R. Majhi, Quantum Tunneling Beyond Semiclassical Approximation, JHEP 06 (2008) 095 [arXiv:0805.2220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Banerjee and B.R. Majhi, Quantum Tunneling, Trace Anomaly and Effective Metric, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. B.R. Majhi, Fermion Tunneling Beyond Semiclassical Approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [INSPIRE].

    ADS  Google Scholar 

  15. R.-G. Cai, L.-M. Cao and N. Ohta, Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy, JHEP 04 (2010) 082 [arXiv:0911.4379] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Aros, D. Diaz and A. Montecinos, Logarithmic correction to BH entropy as Noether charge, JHEP 07 (2010) 012 [arXiv:1003.1083] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S.N. Solodukhin, Entanglement entropy of round spheres, Phys. Lett. B 693 (2010) 605 [arXiv:1008.4314] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Banerjee, R.K. Gupta and A. Sen, Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic Corrections to N = 4 and N = 8 Black Hole Entropy: A One Loop Test of Quantum Gravity, JHEP 11 (2011) 143 [arXiv:1106.0080] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, arXiv:1108.3842 [INSPIRE].

  21. S. Ferrara and A. Marrani, Generalized Mirror Symmetry and Quantum Black Hole Entropy, Phys. Lett. B 707 (2012) 173 [arXiv:1109.0444] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Sen, Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Breckenridge, R.C. Myers, A. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. I. Mandal and A. Sen, Black Hole Microstate Counting and its Macroscopic Counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Bhattacharyya, B. Panda and A. Sen, Heat Kernel Expansion and Extremal Kerr-Newmann Black Hole Entropy in Einstein-Maxwell Theory, JHEP 08 (2012) 084 [arXiv:1204.4061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

  28. D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys. Lett. B 365 (1996) 51 [hep-th/9412020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R.K. Kaul and P. Majumdar, Quantum black hole entropy, Phys. Lett. B 439 (1998) 267 [gr-qc/9801080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Das, R.K. Kaul and P. Majumdar, A New holographic entropy bound from quantum geometry, Phys. Rev. D 63 (2001) 044019 [hep-th/0006211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A. Ghosh and P. Mitra, A Bound on the log correction to the black hole area law, Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry, Class. Quant. Grav. 21 (2004) 5233 [gr-qc/0407051] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. Ghosh and P. Mitra, An Improved lower bound on black hole entropy in the quantum geometry approach, Phys. Lett. B 616 (2005) 114 [gr-qc/0411035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Ghosh and P. Mitra, Counting black hole microscopic states in loop quantum gravity, Phys. Rev. D 74 (2006) 064026 [hep-th/0605125] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. R. Basu, R.K. Kaul and P. Majumdar, Entropy of Isolated Horizons revisited, Phys. Rev. D 82 (2010) 024007 [arXiv:0907.0846] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634] [INSPIRE].

    ADS  Google Scholar 

  40. J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) Black Hole entropy revisited, JHEP 05 (2011) 016 [arXiv:1103.2723] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. R.K. Kaul, Entropy of quantum black holes, SIGMA 8 (2012) 005 [arXiv:1201.6102] [INSPIRE].

    MathSciNet  Google Scholar 

  42. R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].

  43. S. Das, P. Majumdar and R.K. Bhaduri, General logarithmic corrections to black hole entropy, Class. Quant. Grav. 19 (2002) 2355 [hep-th/0111001] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. M. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Christensen and M. Duff, New Gravitational Index Theorems and Supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Christensen and M. Duff, Quantizing Gravity with a Cosmological Constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Duff and P. van Nieuwenhuizen, Quantum Inequivalence of Different Field Representations, Phys. Lett. B 94 (1980) 179 [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Christensen, M. Duff, G. Gibbons and M. Roček, VANISHING ONE LOOP β-function IN GAUGED N ¿ 4 SUPERGRAVITY, Phys. Rev. Lett. 45 (1980) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  49. N.D. Birrel and P.C.W. Davis, Quantum Fields in Curved Space, Cambridge University Press, New York U.S.A. (1982).

    Book  Google Scholar 

  50. P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish Inc. U.S.A. (1984)

    MATH  Google Scholar 

  51. D. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. M. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav. 28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. T. Jacobson, Renormalization and black hole entropy in Loop Quantum Gravity, Class. Quant. Grav. 24 (2007) 4875 [arXiv:0707.4026] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. G. Gibbons and S. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. R.C. Henry, Kretschmann scalar for a Kerr-Newman black hole, astro-ph/9912320 [INSPIRE].

  56. C. Cherubini, D. Bini, S. Capozziello and R. Ruffini, Second order scalar invariants of the Riemann tensor: Applications to black hole space-times, Int. J. Mod. Phys. D 11 (2002) 827 [gr-qc/0302095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Mukherji and S.S. Pal, Logarithmic corrections to black hole entropy and AdS/CFT correspondence, JHEP 05 (2002) 026 [hep-th/0205164] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Chatterjee and P. Majumdar, Universal canonical black hole entropy, Phys. Rev. Lett. 92 (2004) 141301 [gr-qc/0309026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M.-I. Park, Testing holographic principle from logarithmic and higher order corrections to black hole entropy, JHEP 12 (2004) 041 [hep-th/0402173] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Majhi and P. Majumdar, Charged Quantum Black Holes: Thermal Stability Criterion, Class. Quant. Grav. 29 (2012) 135013 [arXiv:1108.4670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. L. Smolin, Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys. 36 (1995) 6417 [gr-qc/9505028] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. K.V. Krasnov, On Quantum statistical mechanics of Schwarzschild black hole, Gen. Rel. Grav. 30 (1998) 53 [gr-qc/9605047] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy, Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  65. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. R.C. Myers and M. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke Sen.

Additional information

ArXiv ePrint: 1205.0971

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, A. Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions. J. High Energ. Phys. 2013, 156 (2013). https://doi.org/10.1007/JHEP04(2013)156

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)156

Keywords

Navigation