Skip to main content
Log in

Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an up-to-date global analysis of solar, atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino oscillations. We discuss in detail the statistical significance of the observed “hint” of non-zero θ 13 in the solar sector at the light of the latest experimental advances, such as the Borexino spectral data, the lower value of Gallium rate recently measured in SAGE, and the low energy threshold analysis of the combined SNO phase I and phase II. We also study the robustness of the results under changes of the inputs such as the choice of solar model fluxes and a possible modification of the Gallium capture cross-section as proposed by SAGE. In the atmospheric sector we focus on the latest results for ν e appearance from MINOS and on the recent Super-Kamiokande results from the combined phases I, II and III, and we discuss their impact on the determination of θ 13. Finally, we combine all the data into a global analysis and determine the presently allowed ranges of masses and mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [SPIRES].

    ADS  Google Scholar 

  2. V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [SPIRES].

    ADS  Google Scholar 

  3. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  4. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  5. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  6. S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [SPIRES].

    ADS  Google Scholar 

  7. P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter, Nucl. Phys. B 282 (1987) 589 [SPIRES].

    Article  ADS  Google Scholar 

  8. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Neutrino masses and mixing: 2008 status, Nucl. Phys. Proc. Suppl. 188 (2009) 27 [SPIRES].

    Article  ADS  Google Scholar 

  9. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ 13, PoS IDM2008 (2008) 072 [arXiv:0812.3161] [SPIRES].

    Google Scholar 

  11. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].

    Article  ADS  Google Scholar 

  12. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, SNO, KamLAND and neutrino oscillations: θ 13, arXiv:0905.3549 [SPIRES].

  13. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].

    Article  ADS  Google Scholar 

  14. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [1001.2731] [SPIRES].

    ADS  Google Scholar 

  15. R.L. Hahn, Radiochemical solar neutrino experiments, ‘successful and otherwise’, J. Phys. Conf. Ser. 136 (2008) 022003.

    Article  ADS  Google Scholar 

  16. SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].

    ADS  Google Scholar 

  17. Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [SPIRES].

    ADS  Google Scholar 

  18. SNO collaboration, B. Aharmim et al., Measurement of the nu/e and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [SPIRES].

    Article  ADS  Google Scholar 

  19. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].

    ADS  Google Scholar 

  20. SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [SPIRES].

    Article  ADS  Google Scholar 

  21. SNO collaboration, B. Aharmim et al., Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory, arXiv:0910.2984 [SPIRES].

  22. The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].

    Article  ADS  Google Scholar 

  23. T.B. Collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, arXiv:0808.2868 [SPIRES].

  24. J.N. Bahcall, Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [SPIRES].

    ADS  Google Scholar 

  25. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Direct determination of the solar neutrino fluxes from solar neutrino data, arXiv:0910.4584 [SPIRES].

  26. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].

    ADS  Google Scholar 

  27. S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [SPIRES].

    Google Scholar 

  28. M. Asplund, N. Grevesse and J. Sauval, The solar chemical composition, ASP Conf. Ser. 336 (2005) 25.

    ADS  Google Scholar 

  29. M. Asplund, N. Grevesse, A.J. Sauval and P. Scott, The chemical composition of the Sun, Ann. Rev. Astron. Astrophys. 47 (2009) 481 [arXiv:0909.0948] [SPIRES].

    Article  ADS  Google Scholar 

  30. N. Grevesse and A.J. Sauval, Standard Solar Composition, Space Sci. Rev. 85 (1998) 161.

    Article  ADS  Google Scholar 

  31. J.N. Bahcall, S. Basu, M. Pinsonneault and A.M. Serenelli, Helioseismological Implications of Recent Solar Abundance Determinations, Astrophys. J. 618 (2005) 1049 [astro-ph/0407060] [SPIRES].

    Article  ADS  Google Scholar 

  32. W.J. Chaplin et al., Solar heavy element abundance: constraints from frequency separation ratios of low-degree p modes, Astrophys. J. 670 (2007) 872 [arXiv:0705.3154] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Basu et al., Solar abundances and helioseismology: fine structure spacings and separation ratios of low-degree p modes, Astrophys. J. 655 (2007) 660 [astro-ph/0610052] [SPIRES].

    Article  ADS  Google Scholar 

  34. J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology and neutrino fluxes, Astrophys. J. 621 (2005) L85 [astro-ph/0412440] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New Solar Composition: The Problem With Solar Models Revisited, arXiv:0909.2668 [SPIRES].

  36. S. Goswami and A.Y. Smirnov, Solar neutrinos and 1-3 leptonic mixing, Phys. Rev. D 72 (2005) 053011 [hep-ph/0411359] [SPIRES].

    ADS  Google Scholar 

  37. KamLAND collaboration, I. Shimizu, KamLAND (anti-neutrino status), J. Phys. Conf. Ser. 120 (2008) 052022.

    Article  ADS  Google Scholar 

  38. A.B. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of theta13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [SPIRES].

    ADS  Google Scholar 

  39. Super-Kamiokande collaboration, Y. Ashie et al., A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [SPIRES].

    ADS  Google Scholar 

  40. P. Litchfield, Review of atmospheric υ data, talk given at the XXII International Conference on Neutrino Physics, Santa Fe, New Mexico, June 13–19, 2006.

  41. Kamiokande collaboration, S.R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, arXiv:1002.3471 [SPIRES].

  42. K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  43. MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].

    Article  ADS  Google Scholar 

  44. MINOS collaboration, P. Adamson et al., Search for muon-neutrino to electron-neutrino transitions in MINOS, Phys. Rev. Lett. 103 (2009) 261802 [arXiv:0909.4996] [SPIRES].

    Article  ADS  Google Scholar 

  45. CHOOZ collaboration, M. Apollonio et al., Limits on Neutrino Oscillations from the CHOOZ Experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 1001.4524

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Garcia, M.C., Maltoni, M. & Salvado, J. Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0. J. High Energ. Phys. 2010, 56 (2010). https://doi.org/10.1007/JHEP04(2010)056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)056

Keywords

Navigation