Skip to main content
Log in

Higher derivative corrections to R-charged black holes: boundary counterterms and the mass-charge relation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We carry out the holographic renormalization of Einstein-Maxwell theory with curvature-squared corrections. In particular, we demonstrate how to construct the generalized Gibbons-Hawking surface term needed to ensure a perturbatively well-defined variational principle. This treatment ensures the absence of ghost degrees of freedom at the linearized perturbative order in the higher-derivative corrections. We use the holographically renormalized action to study the thermodynamics of R-charged black holes with higher derivatives and to investigate their mass to charge ratio in the extremal limit. In five dimensions, there seems to be a connection between the sign of the higher derivative couplings required to satisfy the weak gravity conjecture and that violating the shear viscosity to entropy bound. This is in turn related to possible constraints on the central charges of the dual CFT, in particular to the sign of ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  2. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  3. K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric completion of an R 2 term in five-dimensional supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Black holes in five-dimensional gauged supergravity with higher derivatives, JHEP 12 (2009) 045 [arXiv:0812.3572] [SPIRES].

    Article  ADS  Google Scholar 

  5. J.Z. Simon, Higher derivative lagrangians, nonlocality, problems and solutions, Phys. Rev. D 41 (1990) 3720 [SPIRES].

    ADS  Google Scholar 

  6. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Teitelboim and J. Zanelli, Dimensionally continued topological gravitation theory in Hamiltonian form, Class. Quant. Grav. 4 (1987) L125.

    Article  MathSciNet  ADS  Google Scholar 

  8. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [SPIRES].

    ADS  Google Scholar 

  9. E. Dyer and K. Hinterbichler, Boundary terms, variational principles and higher derivative modified gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S. Nojiri and S.D. Odintsov, Brane-world cosmology in higher derivative gravity or warped compactification in the next-to-leading order of AdS/CFT correspondence, JHEP 07 (2000) 049 [hep-th/0006232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Nojiri, S.D. Odintsov and S. Ogushi, Cosmological and black hole brane world universes in higher derivative gravity, Phys. Rev. D 65 (2002) 023521 [hep-th/0108172] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and Anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [SPIRES].

    Article  ADS  Google Scholar 

  14. Y. Brihaye and E. Radu, Five-dimensional rotating black holes in Einstein-Gauss-Bonnet theory, Phys. Lett. B 661 (2008) 167 [arXiv:0801.1021] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.T. Liu and W.A. Sabra, Hamilton-Jacobi counterterms for Einstein-Gauss-Bonnet gravity, arXiv:0807.1256 [SPIRES].

  18. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. A. Buchel and L.A. Pando Zayas, Hagedorn vs. Hawking-Page transition in string theory, Phys. Rev. D 68 (2003) 066012 [hep-th/0305179] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. J.T. Liu and W.A. Sabra, Mass in Anti-de Sitter spaces, Phys. Rev. D 72 (2005) 064021 [hep-th/0405171] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  23. J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended einstein equations, Nucl. Phys. B 268 (1986) 737 [SPIRES].

    Article  ADS  Google Scholar 

  24. D.L. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term, Phys. Lett. B 169 (1986) 36 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  26. J.T. Liu and P. Szepietowski, Higher derivative corrections to R-charged AdS 5 black holes and field redefinitions, Phys. Rev. D 79 (2009) 084042 [arXiv:0806.1026] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. C. Vafa, The string landscape and the swampland, hep-th/0509212 [SPIRES].

  30. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Giveon, D. Gorbonos and M. Stern, Fundamental strings and higher derivative corrections to D-dimensional black holes, JHEP 02 (2010) 012 [arXiv:0909.5264] [SPIRES].

    Article  Google Scholar 

  33. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

    ADS  Google Scholar 

  36. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

    Article  ADS  Google Scholar 

  37. A. Buchel, Resolving disagreement for η s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η s , Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  39. A. Buchel, R.C. Myers and A. Sinha, Beyond η s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  40. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [SPIRES].

  41. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [SPIRES].

  42. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  ADS  Google Scholar 

  43. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  45. A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Gabella, J.P. Gauntlett, E. Palti, J. Sparks and D. Waldram, The central charge of supersymmetric AdS 5 solutions of type IIB supergravity, Phys. Rev. Lett. 103 (2009) 051601 [arXiv:0906.3686] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Gabella, J.P. Gauntlett, E. Palti, J. Sparks and D. Waldram, AdS 5 solutions of type IIB supergravity and generalized complex geometry, arXiv:0906.4109 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Szepietowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremonini, S., Liu, J.T. & Szepietowski, P. Higher derivative corrections to R-charged black holes: boundary counterterms and the mass-charge relation. J. High Energ. Phys. 2010, 42 (2010). https://doi.org/10.1007/JHEP03(2010)042

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)042

Keywords

Navigation