Skip to main content
Log in

\( {\sqrt {{\widehat{s}}}_{\min }} \) resurrected

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the use of the variable \( {\sqrt {{\widehat{s}}}_{\min }} \), which has been proposed in order to measure the hard scale of a multi parton final state event using inclusive quantities only, on a SUSY data sample for a 14 TeV LHC. In its original version, where this variable was proposed on calorimeter level, the direct correlation to the hard scattering scale does not survive when effects from soft physics are taken into account. We here show that when using reconstructed objects instead of calorimeter energy and momenta as input, we manage to actually recover this correlation for the parameter point considered here. We furthermore discuss the effect of including W + jets and \( \overline t t \) + jets background in our analysis and the use of \( {\sqrt {{\widehat{s}}}_{\min }} \)for the suppression of SM induced background in new physics searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Tonelli, Highlights and searches at CMS, presentation at International Europhysics Conference on High Energy Physics, Grenoble France (2011), http://eps-hep2011.eu/.

  2. D. Charlton, Highlights and searches at ATLAS, presentation at International Europhysics Conference on High Energy Physics, Grenoble France (2011), http://eps-hep2011.eu/.

  3. H. Bachacou, BSM Results from LHC, presented at Lepton-Photon 2011, Mumbai India (2011), http://www.tifr.res.in/∼lp11.

  4. A.J. Barr and C.G. Lester, A Review of the Mass Measurement Techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].

    ADS  Google Scholar 

  5. A.J. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev. D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].

    ADS  Google Scholar 

  6. C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

    ADS  Google Scholar 

  7. D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [INSPIRE].

    Article  ADS  Google Scholar 

  8. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].

    ADS  Google Scholar 

  9. H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, ATLAS detector and physics performance: technical design report. Vol. 2, ATLAS-TDR-015, CERN, Geneva Switzerland (1999).

  11. B. Allanach, C. Lester, M.A. Parker and B. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Konar, K. Kong and K.T. Matchev, \( {\sqrt {{\widehat{s}}}_{\min }} \): A Global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders, JHEP 03 (2009) 085 [arXiv:0812.1042] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Papaefstathiou and B. Webber, Effects of QCD radiation on inclusive variables for determining the scale of new physics at hadron colliders, JHEP 06 (2009) 069 [arXiv:0903.2013] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Papaefstathiou and B. Webber, Effects of invisible particle emission on global inclusive variables at hadron colliders, JHEP 07 (2010) 018 [arXiv:1004.4762] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Konar, K. Kong, K.T. Matchev and M. Park, RECO level \( {\sqrt {s}_{\min }} \) and subsystem \( {\sqrt {s}_{\min }} \) : Improved global inclusive variables for measuring the new physics mass scale in /ET events at hadron colliders, JHEP 06 (2011) 041 [arXiv:1006.0653] [INSPIRE].

    Article  ADS  Google Scholar 

  16. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\,TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    ADS  Google Scholar 

  17. B.C. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [INSPIRE].

    Article  ADS  Google Scholar 

  18. New Physics Working Group collaboration, G. Brooijmans et al., New Physics at the LHC. A Les Houches Report: Physics at TeV colliders 2009 — New Physics Working Group, arXiv:1005.1229 [INSPIRE].

  19. S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  20. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Meade and M. Reece, BRIDGE: Branching ratio inquiry / decay generated events, hep-ph/0703031 [INSPIRE].

  24. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  26. http://www.lpthe.jussieu.fr/LesHouches09Wiki/index.php/Mass methods.

  27. I. Antcheva et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [INSPIRE].

    Article  ADS  Google Scholar 

  28. http://root.cern.ch.

  29. D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Robens, work in progress.

  31. CDF collaboration, F. Abe et al., The Topology of three jet events in \( \overline p p \) collisions at \( \sqrt {s} = 1.8\,TeV \), Phys. Rev. D 45 (1992) 1448 [INSPIRE].

    ADS  Google Scholar 

  32. ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment — Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  33. P. Bechtle, R. Bruneli`ere, M. Kobel, J.-R. Lessard and S. Wahrmund, private communication.

  34. A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, A. Tricoli, Underlying event studies at ATLAS, ATL-PHYS-PROC-2009-048, CERN, Geneva Switzerland (2009).

  36. R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Kar, private communication.

  38. ATLAS collaboration, Jet energy scale and its systematic uncertainty for jets produced in proton-proton collisions at \( \sqrt {s} = 7\,TeV \) and measured with the ATLAS detector, ATLAS-CONF-2010-056, CERN, Geneva Switzerland (2010).

  39. D. Tovey, Measuring the SUSY mass scale at the LHC, Phys. Lett. B 498 (2001) 1 [hep-ph/0006276] [INSPIRE].

    ADS  Google Scholar 

  40. J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry Without Prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [INSPIRE].

    Article  ADS  Google Scholar 

  41. W.L. van Neerven, J.A.M. Vermaseren and K.J.F. Gaemers, Lepton-jet events as a signature for W production in \( \overline p p \) collisions, NIKHEF preprint NIKHEF-H/82-20 (1982) [INSPIRE].

  42. UA1 collaboration, G. Arnison et al., Further Evidence for Charged Intermediate Vector Bosons at the SPS Collider, Phys. Lett. B 129 (1983) 273 [INSPIRE].

    ADS  Google Scholar 

  43. UA1 collaboration, G. Arnison et al., Recent Results on Intermediate Vector Boson Properties at the CERN Super Proton Synchrotron Collider, Phys. Lett. B 166 (1986) 484 [INSPIRE].

    ADS  Google Scholar 

  44. V.D. Barger, T. Han and R. Phillips, Improved transverse mass variable for detecting Higgs boson decays into Z pairs, Phys. Rev. D 36 (1987) 295 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Robens.

Additional information

ArXiv ePrint: 1109.1018

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robens, T. \( {\sqrt {{\widehat{s}}}_{\min }} \) resurrected. J. High Energ. Phys. 2012, 51 (2012). https://doi.org/10.1007/JHEP02(2012)051

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)051

Keywords

Navigation