Skip to main content
Log in

Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in [1]. We formulate the problem in terms of a “spinor-like” first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O.P. Sampaio, Charge and mass effects on the evaporation of higher-dimensional rotating black holes, JHEP 10 (2009) 008 [arXiv:0907.5107] [SPIRES].

    Article  Google Scholar 

  2. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973) 635 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. W.H. Press and S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J. 185 (1973) 649 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J. 193 (1974) 443 [SPIRES].

    Article  ADS  Google Scholar 

  7. S.R. Dolan, Scattering and absorption of gravitational plane waves by rotating black holes, Class. Quant. Grav. 25 (2008) 235002 [arXiv:0801.3805] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.N. Page and S.W. Hawking, Gamma rays from primordial black holes, Astrophys. J. 206 (1976) 1 [SPIRES].

    Article  ADS  Google Scholar 

  9. S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. C. Rovelli, Loop quantum gravity, Living Rev. Rel. 11 (2008) 5 [SPIRES].

    Google Scholar 

  11. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. vol. 1: Introduction, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987) pg. 469.

    Google Scholar 

  12. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  14. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to aFermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  15. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].

    ADS  Google Scholar 

  16. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. T. Flacke, D. Hooper and J. March-Russell, Improved bounds on universal extra dimensions and consequences for LKP dark matter, Phys. Rev. D 73 (2006) 095002 [Erratum ibid. D 74 (2006) 019902] [hep-ph/0509352] [SPIRES].

    ADS  Google Scholar 

  19. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].

    ADS  Google Scholar 

  20. N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [SPIRES].

    ADS  Google Scholar 

  21. S.B. Giddings and S.D. Thomas, High energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [SPIRES].

    ADS  Google Scholar 

  22. S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [SPIRES].

    Article  ADS  Google Scholar 

  23. P.C. Argyres, S. Dimopoulos and J. March-Russell, Black holes and sub-millimeter dimensions, Phys. Lett. B 441 (1998) 96 [hep-th/9808138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. U. Sperhake, V. Cardoso, F. Pretorius, E. Berti and J.A. Gonzalez, The high-energy collision of two black holes, Phys. Rev. Lett. 101 (2008) 161101 [arXiv:0806.1738] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Shibata, H. Okawa and T. Yamamoto, High-velocity collision of two black holes, Phys. Rev. D 78 (2008) 101501 [arXiv:0810.4735] [SPIRES].

    ADS  Google Scholar 

  27. U. Sperhake et al., Cross section, final spin and zoom-whirl behavior in high- energy black hole collisions, Phys. Rev. Lett. 103 (2009) 131102 [arXiv:0907.1252] [SPIRES].

    Article  Google Scholar 

  28. M.W. Choptuik and F. Pretorius, Ultra relativistic particle collisions, arXiv:0908.1780 [SPIRES].

  29. C.M. Harris, P. Richardson and B.R. Webber, CHARYBDIS: a black hole event generator, JHEP 08 (2003) 033 [hep-ph/0307305] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Cavaglia, R. Godang, L. Cremaldi and D. Summers, Catfish: a Monte Carlo simulator for black holes at the LHC, Comput. Phys. Commun. 177 (2007) 506 [hep-ph/0609001] [SPIRES].

    Article  ADS  Google Scholar 

  31. D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [SPIRES].

    ADS  Google Scholar 

  32. J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP 10 (2009) 014 [arXiv:0904.0979] [SPIRES].

    Article  Google Scholar 

  33. R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. W.G. Unruh, Second quantization in the Kerr metric, Phys. Rev. D 10 (1974) 3194 [SPIRES].

    ADS  Google Scholar 

  35. G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys. 44 (1975) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Candelas, P. Chrzanowski and K.W. Howard, Quqntization of electromagnetic and gravitational perturbations of a Kess black hole, Phys. Rev. D 24 (1981) 297 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. A.C. Ottewill and E. Winstanley, The renormalized stress tensor in Kerr space-time: general results, Phys. Rev. D 62 (2000) 084018 [gr-qc/0004022] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. M. Casals and A.C. Ottewill, Canonical quantization of the electromagnetic field on the Kerr background, Phys. Rev. D 71 (2005) 124016 [gr-qc/0501005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders: Greybody factors for brane fields, Phys. Rev. D 67 (2003) 064025 [Erratum ibid. D 69 (2004) 049901] [hep-th/0212108] [SPIRES].

    ADS  Google Scholar 

  40. C.M. Harris and P. Kanti, Hawking radiation from a (4+n)-dimensional black hole: exact results for the Schwarzschild phase, JHEP 10 (2003) 014 [hep-ph/0309054] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. C.M. Harris and P. Kanti, Hawking radiation from a (4+n)-dimensional rotating black hole, Phys. Lett. B 633 (2006) 106 [hep-th/0503010] [SPIRES].

    ADS  Google Scholar 

  42. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. II: Anisotropic scalar field emission, Phys. Rev. D 71 (2005) 124039 [hep-th/0503052] [SPIRES].

    ADS  Google Scholar 

  43. G. Duffy, C. Harris, P. Kanti and E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole: Spin-0 particles, JHEP 09 (2005) 049 [hep-th/0507274] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Casals, P. Kanti and E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. II: Spin-1 particles, JHEP 02 (2006) 051 [hep-th/0511163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. V. Cardoso, M. Cavaglia and L. Gualtieri, Black hole particle emission in higher-dimensional spacetimes, Phys. Rev. Lett. 96 (2006) 071301 [Erratum ibid. 96 (2006) 219902] [hep-th/0512002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. V. Cardoso, M. Cavaglia and L. Gualtieri, Hawking emission of gravitons in higher dimensions: Non- rotating black holes, JHEP 02 (2006) 021 [hep-th/0512116] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. III: Determination of black hole evolution, Phys. Rev. D 73 (2006) 124022 [hep-th/0602188] [SPIRES].

    ADS  Google Scholar 

  48. M. Casals, S.R. Dolan, P. Kanti and E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. III: Spin-1/2 particles, JHEP 03 (2007) 019 [hep-th/0608193] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Casals, S.R. Dolan, P. Kanti and E. Winstanley, Bulk emission of scalars by a rotating black hole, JHEP 06 (2008) 071 [arXiv:0801.4910] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.M. Bardeen, W.H. Press and S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction and scalar synchrotron radiation, Astrophys. J. 178 (1972) 347 [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Chandrasekhar, The mathematical theory of black holes, Clarendon, Oxford U.K. (1992) pg. 646.

    Google Scholar 

  52. A.L. Dudley and J.D. Finley, Separation of wave equations for perturbations of general Type-D space-times, Phys. Rev. Lett. 38 (1977) 1505 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. K.D. Kokkotas, Quasinormal modes of the Kerr-Newman black hole, Nuovo Cim. B 108 (1993) 991 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. E. Berti and K.D. Kokkotas, Quasinormal modes of Kerr-Newman black holes: Coupling of electromagnetic and gravitational perturbations, Phys. Rev. D 71 (2005) 124008 [gr-qc/0502065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. M. Rogatko and A. Szyplowska, Massive Fermion emission from higher dimensional black holes, Phys. Rev. D 79 (2009) 104005 [arXiv:0904.4544] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco O. P. Sampaio.

Additional information

ArXiv ePrint: 0911.0688

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampaio, M.O.P. Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes. J. High Energ. Phys. 2010, 42 (2010). https://doi.org/10.1007/JHEP02(2010)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)042

Keywords

Navigation