Skip to main content
Log in

A transfer matrix method for resonances in Randall-Sundrum models III: an analytical comparison

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The transfer matrix method is used to analyze resonances in Randall-Sundrum models. Although it has successfully been used previously by us we provide here a comparison between the numerical and analytical models. To reach this we first find new exact solution for the scalar, gauge, Kalb-Ramond and q-form fields. Them we calculate numerically the resonances by the transfer matrix method and compare with the analytical result. For completeness, this is done for models with and without the dilaton coupling. The results show a perfect agreement between the analytical and numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Bazeia, A.R. Gomes, L. Losano and R. Menezes, Braneworld models of scalar fields with generalized dynamics, Phys. Lett. B 671 (2009) 402 [arXiv:0808.1815] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. V.I. Afonso, D. Bazeia, R. Menezes and A.Y. Petrov, f (R)-brane, Phys. Lett. B 658 (2007) 71 [arXiv:0710.3790] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. D. Bazeia and L. Losano, Deformed defects with applications to braneworlds, Phys. Rev. D 73 (2006) 025016 [hep-th/0511193] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. D. Bazeia and A.R. Gomes, Bloch brane, JHEP 05 (2004) 012 [hep-th/0403141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.C. Fonseca, F.A. Brito and L. Losano, 4D gravity on a non-BPS bent dilatonic brane, JCAP 01 (2012) 032 [arXiv:1106.5719] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R.C. Fonseca, F.A. Brito and L. Losano, 4D gravity on a BPS brane in 5D AdS-Minkowski space, Phys. Lett. B 697 (2011) 493 [arXiv:1012.2349] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. J. Yang, Y.-L. Li, Y. Zhong and Y. Li, Thick brane split caused by spacetime torsion, Phys. Rev. D 85 (2012) 084033 [arXiv:1202.0129] [INSPIRE].

    ADS  Google Scholar 

  10. C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes and R. Casana, Fermion localization and resonances on two-field thick branes, Phys. Rev. D 79 (2009) 125022 [arXiv:0901.3543] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. L.J.S. Sousa, W.T. Cruz and C.A.S. Almeida, Tensor gauge field localization on a string-like defect, Phys. Lett. B 711 (2012) 97 [arXiv:1203.5149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. Y.-X. Liu, H. Guo, C.-E. Fu and H.-T. Li, Localization of bulk matters on a thick anti-de Sitter brane, Phys. Rev. D 84 (2011) 044033 [arXiv:1101.4145] [INSPIRE].

    ADS  Google Scholar 

  13. H.R. Christiansen, M.S. Cunha and M.O. Tahim, Exact solutions for a Maxwell-Kalb-Ramond action with dilaton: localization of massless and massive modes in a sine-Gordon brane-world, Phys. Rev. D 82 (2010) 085023 [arXiv:1006.1366] [INSPIRE].

    ADS  Google Scholar 

  14. L.B. Castro, Fermion localization on two-field thick branes, Phys. Rev. D 83 (2011) 045002 [arXiv:1008.3665] [INSPIRE].

    ADS  Google Scholar 

  15. Z.-H. Zhao, Y.-X. Liu, H.-T. Li and Y.-Q. Wang, Effects of the variation of mass on fermion localization and resonances on thick branes, Phys. Rev. D 82 (2010) 084030 [arXiv:1004.2181] [INSPIRE].

    ADS  Google Scholar 

  16. Y.-X. Liu, C.-E. Fu, H. Guo, S.-W. Wei and Z.-H. Zhao, Bulk matters on a GRS-inspired braneworld, JCAP 12 (2010) 031 [arXiv:1002.2130] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A.E.R. Chumbes, J.M. Hoff da Silva and M.B. Hott, A model to localize gauge and tensor fields on thick branes, Phys. Rev. D 85 (2012) 085003 [arXiv:1108.3821] [INSPIRE].

    ADS  Google Scholar 

  18. J.M. Hoff da Silva, Two-branes with variable tension model and the effective Newtonian constant, Phys. Rev. D 83 (2011) 066001 [arXiv:1101.4214] [INSPIRE].

    ADS  Google Scholar 

  19. M.C.B. Abdalla, M.E.X. Guimaraes and J.M. Hoff da Silva, Positive tension 3-branes in an AdS 5 bulk, JHEP 09 (2010) 051 [arXiv:1001.1075] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Bazeia, A.R. Gomes and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135 [arXiv:0708.3530] [INSPIRE].

    ADS  Google Scholar 

  22. Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S. Duan, Fermion localization and resonances on a de Sitter thick brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [INSPIRE].

    ADS  Google Scholar 

  23. Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Liang and Y.-S. Duan, Localization of matter and fermion resonances on double walls, Phys. Lett. B 681 (2009) 172 [INSPIRE].

    ADS  Google Scholar 

  25. Z.-H. Zhao, Y.-X. Liu, Y.-Q. Wang and H.-T. Li, Effects of temperature on thick branes and the fermion (quasi-)localization, JHEP 06 (2011) 045 [arXiv:1102.4894] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion resonances on a thick brane with a piecewise warp factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [INSPIRE].

    ADS  Google Scholar 

  27. H. Guo, Y.-X. Liu, Z.-H. Zhao and F.-W. Chen, Thick branes with a non-minimally coupled bulk-scalar field, Phys. Rev. D 85 (2012) 124033 [arXiv:1106.5216] [INSPIRE].

    ADS  Google Scholar 

  28. Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, Domain wall brane in squared curvature gravity, JHEP 06 (2011) 135 [arXiv:1104.3188] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y.-X. Liu, H.-T. Li, Z.-H. Zhao, J.-X. Li and J.-R. Ren, Fermion resonances on multi-field thick branes, JHEP 10 (2009) 091 [arXiv:0909.2312] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R.A.C. Correa, A. de Souza Dutra and M.B. Hott, Fermion localization on degenerate and critical branes, Class. Quant. Grav. 28 (2011) 155012 [arXiv:1011.1849] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L.B. Castro and L.A. Meza, Fermion localization on branes with generalized dynamics, arXiv:1011.5872 [INSPIRE].

  32. A.E.R. Chumbes, A.E.O. Vasquez and M.B. Hott, Fermion localization on a split brane, Phys. Rev. D 83 (2011) 105010 [arXiv:1012.1480] [INSPIRE].

    ADS  Google Scholar 

  33. L.B. Castro and L.A. Meza, Effect of the variation of mass on fermion localization on thick branes, arXiv:1104.5402 [INSPIRE].

  34. R.R. Landim, G. Alencar, M.O. Tahim and R.N.C. Costa Filho, A transfer matrix method for resonances in Randall-Sundrum models, JHEP 08 (2011) 071 [arXiv:1105.5573] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R.R. Landim, G. Alencar, M.O. Tahim and R.N. Costa Filho, A transfer matrix method for resonances in Randall-Sundrum models II: the deformed case, JHEP 02 (2012) 073 [arXiv:1110.5855] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cvetič and M. Robnik, Gravity trapping on a finite thickness domain wall: an analytic study, Phys. Rev. D 77 (2008) 124003 [arXiv:0801.0801] [INSPIRE].

    ADS  Google Scholar 

  37. A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].

    Google Scholar 

  39. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].

    Google Scholar 

  40. P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Smailagic and E. Spallucci, Duality of massive gauge invariant theories in arbitrary space-time dimension, Phys. Rev. D 61 (2000) 067701 [hep-th/9911089] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A. Smailagic and E. Spallucci, Dualization of nonAbelian BF model, Phys. Lett. B 489 (2000) 435 [hep-th/0008094] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. I. Oda and S. Yahikozawa, Linking numbers and variational method, Phys. Lett. B 238 (1990) 272 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. M. Nakahara, Geometry, topology and physics, Taylor & Francis, Boca Raton U.S.A. (2003) [INSPIRE].

    Book  MATH  Google Scholar 

  45. S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB orientifold, JHEP 10 (2003) 007 [hep-th/0201028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. I. Antoniadis and T. Maillard, Moduli stabilization from magnetic fluxes in type-I string theory, Nucl. Phys. B 716 (2005) 3 [hep-th/0412008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Alencar et al., Antisymmetric tensor fields in codimension two brane-world, Europhys. Lett. 93 (2011) 10003 [arXiv:1009.1183] [INSPIRE].

    Article  ADS  Google Scholar 

  49. B. Mukhopadhyaya, S. Sen, S. Sen and S. SenGupta, Bulk Kalb-Ramond field in Randall-Sundrum scenario, Phys. Rev. D 70 (2004) 066009 [hep-th/0403098] [INSPIRE].

    ADS  Google Scholar 

  50. B. Mukhopadhyaya, S. Sen and S. SenGupta, Bulk antisymmetric tensor fields in a Randall-Sundrum model, Phys. Rev. D 76 (2007) 121501 [arXiv:0709.3428] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. G. De Risi, Bouncing cosmology from Kalb-Ramond braneworld, Phys. Rev. D 77 (2008) 044030 [arXiv:0711.3781] [INSPIRE].

    ADS  Google Scholar 

  52. B. Mukhopadhyaya, S. Sen and S. SenGupta, A Randall-Sundrum scenario with bulk dilaton and torsion, Phys. Rev. D 79 (2009) 124029 [arXiv:0903.0722] [INSPIRE].

    ADS  Google Scholar 

  53. G. Alencar, M.O. Tahim, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Bulk antisymmetric tensor fields coupled to a dilaton in a Randall-Sundrum model, Phys. Rev. D 82 (2010) 104053 [arXiv:1005.1691] [INSPIRE].

    ADS  Google Scholar 

  54. R.R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes and R.N. Costa Filho, On resonances of q-forms in thick p-branes, Europhys. Lett. 97 (2012) 20003 [arXiv:1010.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  55. L.D. Landau and E.M. Lifshitz, Course of theoretical physics. Volume 3: Quantum mechanics, non-relativistic theory, Pergamon Press, London-Paris (1958).

    Google Scholar 

  56. G.R. Dvali, G. Gabadadze and M. Porrati, Metastable gravitons and infinite volume extra dimensions, Phys. Lett. B 484 (2000) 112 [hep-th/0002190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alencar.

Additional information

This paper is dedicated to the memory of my wife

Isabel Mara (R.R. Landim)

ArXiv ePrint: 1207.3054

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alencar, G., Landim, R.R., Tahim, M.O. et al. A transfer matrix method for resonances in Randall-Sundrum models III: an analytical comparison. J. High Energ. Phys. 2013, 50 (2013). https://doi.org/10.1007/JHEP01(2013)050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)050

Keywords

Navigation