Skip to main content

Input-output functions of mammalian motoneurons

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 143))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandri-Haber, N., C. Paillart, C. Arsac, M. Gola, F. Couraud, and M. Crest (1999) Specific distribution of sodium channels in axons of rat embryo spinal motoneurones. J Physiol (Lond) 518:203–14

    CAS  Google Scholar 

  • Alvarez, F. J., J. C. Pearson, D. Harrington, D. Dewey, L. Torbeck, and R. E. W. Fyffe (1998) Distribution of 5-hydroxytryptamine-immunoreactive boutons on alphamotoneurons in the lumbar spinal cord of adult cats. J Comp Neurol 393:69–83

    PubMed  CAS  Google Scholar 

  • Araki, T., and C. A. Terzuolo (1962) Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J Neurophysiol 25:772–789

    PubMed  CAS  Google Scholar 

  • Arvidsson, U., S. Cullheim, B. Ulfhake, G. W. Bennett, K. C. Fone, A. C. Cuello, A. A. Verhofstad, T. J. Visser, and T. Hokfelt (1990) 5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: immunohistochemical and chemical studies. Synapse 6:237–70

    PubMed  CAS  Google Scholar 

  • Ascher, P. and L. Nowak (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurons in culture. J Physiol (Lond) 399:247–266

    CAS  Google Scholar 

  • Ashby, P., and D. Zilm (1982) Relationship between EPSP shape and cross-correlation profile explored by computer simulation for studies on human motoneurons. Exp Brain Res 47:33–40

    PubMed  CAS  Google Scholar 

  • Baldissera, F., P. Campadelli, and L. Piccinelli (1987) The dynamic response of cat gastrocnemius motor units investigated by ramp-current injection into their motoneurones. J Physiol (Lond) 387:317–30

    CAS  Google Scholar 

  • Baldissera, F., and B. Gustafsson (1974a) Afterhyperpolarization time course in lumbar motoneurones of the cat. Acta Physiol Scand 91:512–527

    PubMed  CAS  Google Scholar 

  • Baldissera, F., and B. Gustafsson (1974b) Firing behaviour of a neuron model based on the afterhyperpolarization conductance time-course and algebraical summation. Adaptation and steady state firing. Acta Physiol Scand 92:27–47

    PubMed  CAS  Google Scholar 

  • Baldissera, F., and B. Gustafsson (1974c) Firing behaviour of a neuron model based on the afterhyperpolarization conductance time-course. First interval firing. Acta Physiol Scand 91:528–544

    PubMed  CAS  Google Scholar 

  • Baldissera, F., B. Gustafsson, and F. Parmiggiani (1976) A model for refractoriness accumulation and secondary range firing in spinal motoneurones. Biol Cybern 24:61–65

    Google Scholar 

  • Baldissera, F., B. Gustafsson, and F. Parmiggiani (1978) Saturating summation of the afterhyperpolarization conductance in spinal motoneurones: a mechanism for 'secondary range’ repetitive firing. Brain Res 146:69–82

    PubMed  CAS  Google Scholar 

  • Barrett, E. F., J. N. Barrett, and W. E. Crill (1980) Voltage-sensitive outward currents in cat motoneurones. J Physiol (Lond) 304:251–76

    CAS  Google Scholar 

  • Barrett, J. N. (1975) Motoneuron dendrites: role in synaptic integration. Fed Proc 34:1398–1407

    PubMed  CAS  Google Scholar 

  • Barrett, J. N., and W. E. Crill (1974a) Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J Physiol (Lond) 239:325–45

    CAS  Google Scholar 

  • Barrett, J. N., and W. E. Crill (1974b) Specific membrane properties of cat motoneurones. J Physiol (Lond) 239:301–324

    CAS  Google Scholar 

  • Barrett, J. N., and W. E. Crill (1980) Voltage clamp of cat motoneurone somata: properties of the fast inward current. J Physiol (Lond) 304:231–49

    CAS  Google Scholar 

  • Bayliss, D. A., M. Umemiya, and A. J. Berger (1995) Inhibition of N-and P-type calcium currents and the after-hyperpolarization in rat motoneurones by serotonin. J Physiol (Lond) 485:635–47

    CAS  Google Scholar 

  • Bayliss, D. A., F. Viana, and A. J. Berger (1992) Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. J Neurophysiol 68:1733–45

    PubMed  CAS  Google Scholar 

  • Bellingham, M. C., and A. J. Berger (1996) Presynaptic depression of excitatory synaptic inputs to rat hypoglossal motoneurons by muscarinic M2 receptors. J Neurophysiol 76:3758–70

    PubMed  CAS  Google Scholar 

  • Bennett, D. J., H. Hultborn, B. Fedirchuk, and M. Gorassini (1998a) Short-term plasticity in hindlimb motoneurons of decerebrate cats. J Neurophysiol 80:2038–2045

    PubMed  CAS  Google Scholar 

  • Bennett, D. J., H. Hultborn, B. Fedirchuk, and M. Gorassini (1998b) Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. J Neurophysiol 80:2023–2037

    PubMed  CAS  Google Scholar 

  • Berger, A. J., D. A. Bayliss, and F. Viana (1992) Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin. Neurosci Lett 143:164–8

    PubMed  CAS  Google Scholar 

  • Bernander, O., C. Koch, and R. J. Douglas (1994) Amplification and linearization of distal synaptic input to cortical pyramidal cells. J Neurophysiol 72:2743–2753

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie, B., R. Johansson, O. C. J. Lippold, S. Smith, and J. J. Woods (1983) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol (Lond) 340:335–346

    CAS  Google Scholar 

  • Binder, M.D. (2000) Comparison of effective synaptic currents generated in spinal motoneurons by activating different input systems. In: Biomechanics and Neural Control of Posture and Movement. J.M. Winters and P.E. Crago (eds) Springer-Verlag, New York, 74–81

    Google Scholar 

  • Binder, M. D., C. J. Heckman, and R. K. Powers (1993) How different afferent inputs control motoneuron discharge and the output of the motoneuron pool. Curr Op Neurobiol 3:1028–1034

    PubMed  CAS  Google Scholar 

  • Binder, M. D., C. J. Heckman, and R. K. Powers (1996) The physiological control of motoneuron activity. In: L. B. Rowell and J. T. Shepherd (eds.). Handbook of Physiology. Section 12. Exercise: Regulation and Integration of Multiple Systems. New York: Oxford University Press, pp 3–53

    Google Scholar 

  • Binder, M. D., and L. M. Mendell (1990) The Segmental Motor System. New York: Oxford University Press, pp Pages

    Google Scholar 

  • Binder, M. D., F. R. Robinson, and R. K. Powers (1998) Distribution of effective synaptic currents in triceps surae motoneurons. VI. Contralateral pyramidal tract. J Neurophysiol 80:241–298

    PubMed  CAS  Google Scholar 

  • Bohmer, G., K. Schmid, and W. Schauer (1991) Evidence for an involvement of NMDA and non-NMDA receptors in synaptic excitation of phrenic motoneurons in the rabbit. Neurosci Lett 130:271–4

    PubMed  CAS  Google Scholar 

  • Booth, V., J. Rinzel, and O. Kieln (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    PubMed  CAS  Google Scholar 

  • Botterman, B. R., G. A. Iwamoto, and W. J. Gonyea (1986) Gradation of isometric tension by different activation rates in motor units of cat flexor carpi radialis muscle. J Neurophysiol 56:494–506

    PubMed  CAS  Google Scholar 

  • Brannstrom, T. (1993) Quanitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. J Comp Neurol 330:439–54

    PubMed  CAS  Google Scholar 

  • Bras, H., J. Destombes, P. Gogan, and D. S. Tyc (1987) The dendrites of single brainstem motoneurons intracellularly labelled with horseradish peroxidase in the cat. An ultrastructural analysis of the synaptic covering and the microenvironment. Neuroscience 22:971–81

    PubMed  CAS  Google Scholar 

  • Bras, H., P. Gogan, and D. S. Tyc (1987) The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. Morphological and electrical differences. Neuroscience 22:947–70

    PubMed  CAS  Google Scholar 

  • Bras, H., S. Korogod, Y. Driencourt, P. Gogan, and S. Tycdumont (1993) Stochastic Geometry and Electronic Architecture of Dendritic Arborization of Brain Stem Motoneuron. Eur Jour Neurosci 5:1485–1493

    CAS  Google Scholar 

  • Brismar, T. (1977) Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis. J Physiol (Lond) 270:283–297

    CAS  Google Scholar 

  • Brock, L. G., J. S. Coombs, and J. C. Eccles (1951) Action potentials of motoneurons with intracellular electrode. Proc Otago Med Sch 29:14–15

    Google Scholar 

  • Brock, L. G., J. S. Coombs, and J. C. Eccles (1952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol (Lond) 117:431–460

    CAS  Google Scholar 

  • Brock, L. G., J. S. Coombs, and J. C. Eccles (1953) Intracellular recording from antidromically activated motoneurons. J Physiol (Lond) 122:429–461

    CAS  Google Scholar 

  • Brodin, L., H. G. Trav'en, A. Lansner, P. Wall'en, O. Ekeberg, and S. Grillner (1991) Computer simulations of N-methyl-D-aspartate receptor-induced membrane properties in a neuron model. J Neurophysiol 66:473–84

    PubMed  CAS  Google Scholar 

  • Brown, A. G. (1981) Organization in the Spinal Cord. Berlin: Springer, pp Pages

    Google Scholar 

  • Brown, A. G., and R. E. Fyffe (1981) Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat's lumbosacral spinal cord. J Physiol (Lond) 313:121–40

    CAS  Google Scholar 

  • Brownstone, R. M., L. M. Jordan, D. J. Kriellaars, B. R. Noga, and S. J. Shefchyk (1992) On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Exp Brain Res 90:441–55

    PubMed  CAS  Google Scholar 

  • Bryant, H. L., and J. P. Segundo (1976) Spike initiation by transmembrane current: a white-noise analysis, J Physiol (Lond) 260:279–314

    CAS  Google Scholar 

  • Burke, R. E. (1967) Composite nature of the monosynaptic excitatory postsynaptic potential. J Neurophysiol 30:1114–37

    PubMed  CAS  Google Scholar 

  • Burke, R. E. (1981) Motor units: anatomy, physiology, and functional organization. In: V. B. Brooks (eds.). Handbook of Physiology, The Nervous System, Motor Control. Bethesda, MD: American Physiological Society, pp 345–422

    Google Scholar 

  • Burke, R. E., R. P. Dum, J. W. Fleshman, L. L. Glenn, T. A. Lev, M. J. O'Donovan, and M. J. Pinter (1982) A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209:17–28

    PubMed  CAS  Google Scholar 

  • Burke, R. E., L. Fedina, and A. Lundberg (1971) Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J Physiol (Lond) 214:305–26

    CAS  Google Scholar 

  • Burke, R. E., J. W. Fleshman, and I. Segev (1988) Factors that control the efficacy of group Ia synapses in alpha-motoneurons. J Physiol Paris 83:133–40

    PubMed  Google Scholar 

  • Burke, R. E., and L. L. Glenn (1996) Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat. J Comp Neurol 372:465–485

    PubMed  CAS  Google Scholar 

  • Burke, R. E., E. Jankowska, and G. t. Bruggencate (1970) A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae. J Physiol (Lond) 207:709–32

    CAS  Google Scholar 

  • Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac (1974) Physiological types and histochemical profiles in motor untis of the cat gastrocnemius. J Physiol (Lond) 234:723–748

    Google Scholar 

  • Burke, R. E., and P. G. Nelson (1971) Accommodation to current ramps in motoneurons of fast and slow twitch motor units. Int J Neurosci 1:347–356

    PubMed  CAS  Google Scholar 

  • Burke, R. E., W. Z. Rymer, and J. V. Walsh (1976) Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J Neurophysiol 39:447–58

    PubMed  CAS  Google Scholar 

  • Burke, R. E., and G. ten Bruggencate (1971) Electrotonic characteristics of alpha motoneurones of varying size. J Physiol (Lond) 212:1–20

    Google Scholar 

  • Burke, R. E., B. Walmsley, and J. A. Hodgson (1979) HRP anatomy of group Ia afferent contacts on alpha motoneurones. Brain Res 160:347–52

    PubMed  CAS  Google Scholar 

  • Butrimas, P., and A. Gutman (1979) Theoretical analysis of an experiment with voltage clamping in the motoneurone. Proof of the N-shape pattern of the steady voltage-current characteristic of the dendrite membrane. Biophys 23:897–904

    Google Scholar 

  • Calvin, W. H. (1974) Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res 59:341–346

    Google Scholar 

  • Calvin, W. H., and C. F. Stevens (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 31:574–87

    PubMed  CAS  Google Scholar 

  • Cameron, W. E., D. B. Averill, and A. J. Berger (1983) Morphology of cat phrenic motoneurons as revealed by intracellular injection of horseradish peroxidase. J Comp Neurol 219:70–80

    PubMed  CAS  Google Scholar 

  • Cameron, W. E., D. B. Averill, and A. J. Berger (1985) Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase. J Comp Neurol 231:91–101

    PubMed  CAS  Google Scholar 

  • Campbell, D. M., and P. K. Rose (1997) Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat. J Neurophysiol 77:1470–1486

    PubMed  CAS  Google Scholar 

  • Carlin, K. P., Jiang, Z. and Brownstone, R. M. (2000a) Characterization of calcium currents in functionally mature mouse spinal motoneurons. Eur J Neurosci 12:1624–1634.

    PubMed  CAS  Google Scholar 

  • Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M. and Brownstone, R. M. (2000b) Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. Eur J Neurosci 12: 1635–1646.

    PubMed  CAS  Google Scholar 

  • Cash, S., and R. Yuste (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J Neurosci 18:10–15

    PubMed  CAS  Google Scholar 

  • Chandler, S. H., C.-F. Hsaio, T. Inoue, and L. J. Goldberg (1994) Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. J Neurophysiol 71:129–145

    PubMed  CAS  Google Scholar 

  • Chitravanshi, V. C., and H. N. Sapru (1996) NMDA as well as non-NMDA receptors mediate the neurotransmission of inspiratory drive to phrenic motoneurons in the adult rat. Brain Res 715:104–12

    PubMed  CAS  Google Scholar 

  • Clements, J. D., P. G. Nelson, and S. J. Redman (1986) Intracellular tetraethylammonium ions enhance group Ia excitatory post-synaptic potentials evoked in cat motoneurones. J Physiol (Lond) 377:267–82

    CAS  Google Scholar 

  • Clements, J. D., and S. J. Redman (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol (Lond) 409:63–87

    CAS  Google Scholar 

  • Colbert, C. M., J. C. Magee, D. A. Hoffman, and D. Johnston (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17:6512–6521

    PubMed  CAS  Google Scholar 

  • Collingridge, G. L., and R. A. J. Lester (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Conradi, S. (1969) Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand [Suppl.] 332:5–48

    CAS  Google Scholar 

  • Conradi, S., S. Cullheim, L. Gollvik, and J. O. Kellerth (1983) Electron microscopic observations on the synaptic contacts of group la muscle spindle afferents in the cat lumbosacral spinal cord. Brain Res 265:31–9

    PubMed  CAS  Google Scholar 

  • Conradi, S., J.-O. Kellerth, C.-H. Berthold, and C. Hammarberg (1979) Electron microscopic studies of serially sectioned cat spinal α-motoneurons: IV. Motoneurons innervating slow-twitch (Type S) units of the soleus muscle. J Comp Neurol 184

    Google Scholar 

  • Conway, B. A., H. Hultborn, O. Kiehn, and I. Mintz (1988) Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat. J Physiol (Lond) 405:369–84

    CAS  Google Scholar 

  • Cook, E. P., and D. Johnston (1999) Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input [In Process Citation]. J Neurophysiol 81:535–43

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., D. R. Curtis, and J. C. Eccles (1957a) The generation of impulses in motoneurones. J Physiol (Lond) 139:232–249

    CAS  Google Scholar 

  • Coombs, J. S., D. R. Curtis, and J. C. Eccles (1957b) The interpretation of spike potentials of motoneurones. J Physiol (Lond) 139:198–231

    CAS  Google Scholar 

  • Coombs, J. S., J. C. Eccles, and P. Fatt (1955) The electrical properties of the motoneurone membrane. J Physiol (Lond) 130:291–325

    CAS  Google Scholar 

  • Cope, T. C., and B. D. Clark (1995) Are there important exceptions to the size principle of α-motoneurone recruitment? In: A. Taylor, M. H. Gladden, and R. Durbaba (Eds.), Alpha and Gamma Motor Systems. Plenum Press, New York, pp 71–78

    Google Scholar 

  • Cope, T. C., E. E. Fetz, and M. Matsumura (1987) Cross-correlation assessment of synaptic strength of single la fibre connections with triceps surae motoneurones in cats. J Physiol (Lond) 390:161–188

    CAS  Google Scholar 

  • Cope, T. C., and A. J. Sokoloff (1999) Orderly recruitment tested across muscle boundaries. In: M. D. Binder (eds.). Peripheral and Spinal Mechanisms in the Neural Control of Movement. Amsterdam: Elsevier, pp. 177–190

    Google Scholar 

  • Cordo, P. J., and W. Z. Rymer (1982) Motor-unit activation patterns in lengthening and isometric contractions of hindlimb extensor muscles in the decerebrate cat. J Neurophysiol 47:782–796

    PubMed  CAS  Google Scholar 

  • Crill, W. E. (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    PubMed  CAS  Google Scholar 

  • Cullheim, S. (1978) Relations between cell body size, axon diameter and axon conduction velocity of cat sciatic α-motoneurons stained with horseradish peroxidase. Neurosci Lett 8:17–20

    Google Scholar 

  • Cullheim, S., J. W. Fleshman, L. L. Glenn, and R. E. Burke (1987a) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J Comp Neurol 255:68–81

    PubMed  CAS  Google Scholar 

  • Cullheim, S., J. W. Fleshman, L. L. Glenn, and R. E. Burke (1987b) Threedimensional architecture of dendritic trees in type-identified alphamotoneurons. J Comp Neurol 255:82–96

    PubMed  CAS  Google Scholar 

  • Cullheim, S., and J.-O. Kellerth (1987) A morphological study of the axons and recurrent axon collaterals of cat α-motoneurones supplying different hindlimb muscles. J Physiol (Lond) 281:285–299

    Google Scholar 

  • De Luca, C. J., R. S. LeFever, M. P. McCue, and A. P. Xenakis (1982) Behavior of human motor units in different muscles during linearly varying contractions. J Physiol (Lond) 329:113–128

    Google Scholar 

  • Del Negro, C. A., and S. H. Chandler (1998) Regulation of intrinsic and synaptic properties of neonatal rat trigeminal motoneurons by metabotropic glutamate receptors. J Neurosci 18:9216–26

    PubMed  Google Scholar 

  • Del Negro, C. A., C. F. Hsiao, and S. H. Chandler (1999) Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. J Neurophysiol 81:1478–85

    PubMed  Google Scholar 

  • Delgado-Lezama, R., J. F. Perrier, and J. Hounsgaard (1999) Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptors. J Physiol (Lond) 515:203–7

    CAS  Google Scholar 

  • Delgado-Lezama, R., J. F. Perrier, S. Nedergaard, G. Svirskis, and J. Hounsgaard (1997) Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneurones. J Physiol (Lond) 504:97–102

    CAS  Google Scholar 

  • Dememes, D., and J. Raymond (1982) Radioautographic identification of [3H]glutamic acid labeled nerve endings in the cat oculomotor nucleus. Brain Res 231:433–7

    PubMed  CAS  Google Scholar 

  • Destombes, J., B. G. Horcholle, and D. Thiesson (1992) Distribution of glycinergic terminals on lumbar motoneurons of the adult cat: an ultrastructural study. Brain Res 599:353–60

    PubMed  CAS  Google Scholar 

  • Dong, X. W., and J. L. Feldman (1999) Distinct subtypes of metabotropic glutamate receptors mediate differential actions on excitability of spinal respiratory motoneurons. J Neurosci 19:5173–84

    PubMed  CAS  Google Scholar 

  • Dum, R. P., and T. T. Kennedy (1980) Synaptic organization of defined motor unit types in cat tibialis anterior. J Neurophysiol 43:1631–1644

    PubMed  CAS  Google Scholar 

  • Durand, D. (1984) The somatic shunt cable model for neurons. Biophys J 46:645–53

    PubMed  CAS  Google Scholar 

  • Durand, J. (1991) NMDA actions on rat abducens motoneurones. Eur J Neurosci 3:621–633

    PubMed  Google Scholar 

  • Durand, J. (1993) Synaptic excitation triggers oscillations during NMDA receptor activation in rat abducens motoneurons. Eur J Neurosci 5:1389–1397

    PubMed  CAS  Google Scholar 

  • Durand, J., I. Engberg, and D. S. Tyc (1987) L-glutamate and N-methyl-D-asparatate actions on membrane potential and conductance of cat abducens motoneurones. Neurosci Lett 79:295–300

    PubMed  CAS  Google Scholar 

  • Eccles, J. C. (1957) The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press pp Pages

    Google Scholar 

  • Eccles, J. C. (1964) The Physiology of Synapses. Berlin: Springer-Verlag, pp Pages

    Google Scholar 

  • Eccles, J. C., R. M. Eccles, A. Iggo, and M. Ito (1961) Distribution of recurrent inhibition among motoneurones. J Physiol (Lond) 159:479–499

    CAS  Google Scholar 

  • Eccles, J. C., R. M. Eccles, and A. Lundberg (1957) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol (Lond) 137:22–50

    CAS  Google Scholar 

  • Egger, M. D., N. C. Freeman, and E. Proshansky (1980) Morphology of spinal motoneurones mediating a cutaneous spinal reflex in the cat. J Physiol (Lond) 306:349–63

    CAS  Google Scholar 

  • Ekeberg, O., P. Wall'en, A. Lansner, H. Trav'en, L. Brodin, and S. Grillner (1991) A computer based model for realistic simulations of neural networks. I. The single neuron and synaptic interaction. Biol Cybern 65:81–90

    PubMed  CAS  Google Scholar 

  • Eken, T. (1998) Spontaneous electromyographic activity in adult rat soleus muscle. J Neurophysiol 80:365–376

    PubMed  CAS  Google Scholar 

  • Eken, T., and O. Kiehn (1989) Bistable firing properties of soleus motor units in unrestrained rats. Acta Physiol Scand 136:383–94

    PubMed  CAS  Google Scholar 

  • Elliott, P., and D. I. Wallis (1992) Serotonin and L-norepinephrine as mediators of altered excitability in neonatal rat motoneurons studied in vitro. Neuroscience 47:533–44

    PubMed  CAS  Google Scholar 

  • Endo, K., T. Araki, and Y. Kawai (1975) Contra-and ipsilateral cortical and rubral effects on fast and slow spinal motoneurons of the cat. Brain Res 88:91–98

    PubMed  CAS  Google Scholar 

  • Fetz, E. E., P. D. Cheney, K. Mewes, and S. Palmer (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Progr Brain Res 80:437–449

    CAS  Google Scholar 

  • Fetz, E. E., and B. Gustafsson (1983) Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J Physiol (Lond) 341:387–410

    CAS  Google Scholar 

  • Finkel, A. S., and S. J. Redman (1983) The synaptic current evoked in cat spinal motoneurones by impulses in single group 1a axons. J Physiol (Lond) 342:615–32

    CAS  Google Scholar 

  • Fisher, N. D., and A. Nistri (1993) Substance P and TRH share a common effector pathway in rat spinal motoneurones: an in vitro electrophysiological investigation. Neurosci Lett 153:115–9

    PubMed  CAS  Google Scholar 

  • Flatman, J. A., P. C. Schwindt, and W. E. Crill (1986) The induction and modification of voltage sensitive responses in cat neocortical neurons by N-methyl-D-aspartate. Brain Res 363:62–77

    PubMed  CAS  Google Scholar 

  • Fleidervish, I. A., A. Friedman, and M. J. Gutnick (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol (Lond) 493:83–97

    CAS  Google Scholar 

  • Fleidervish, I. A., and M. J. Gutnick (1996) Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J Neurophysiol 76:2125–2130

    PubMed  CAS  Google Scholar 

  • Fleshman, J. W., J. B. Munson, G. W. Sypert, and W. A. Friedman (1981) Rheobase, input resistance, and motor-unit type in medial gastrocnemius motoneurons in the cat. J Neurophysiol 46:1326–38

    PubMed  CAS  Google Scholar 

  • Fleshman, J. W., I. Segev, and R. B. Burke (1988) Electrotonic architecture of typeidentified alpha-motoneurons in the cat spinal cord. J Neurophysiol 60:60–85

    PubMed  CAS  Google Scholar 

  • Forsythe, I. D., and S. J. Redman (1988) The dependence of motoneurone membrane potential on extracellular ion concentrations studied in isolated rat spinal cord. J Physiol (Lond) 404:83–99

    CAS  Google Scholar 

  • Frankenhaeuser, B., and A. B. Vallbo (1964) Accomodation in myelinated nerve fibres of Xenopus laevis as computed on the basis of voltage clamp data. Acta Physiol Scand 63:1–20

    Google Scholar 

  • Friedman, W. A., G. W. Sypert, J. B. Munson, and J. W. Fleshman (1981) Recurrent inhibition in type-identified motoneurons. J Neurophysiol 46:1349–1359

    PubMed  CAS  Google Scholar 

  • Fukushima, K., B. W. Peterson, and V. J. Wilson (1979) Vestibulospinal, reticulospinal and interstitiospinal pathways in the cat. Prog. Brain Res 50:121–136

    PubMed  CAS  Google Scholar 

  • Fulton, B. P., and K. Walton (1986) Electrophysiological properties of neonatal rat motoneurones studied in vitro. J Physiol (Lond) 370:651–78

    CAS  Google Scholar 

  • Fuortes, M. G. F., K. Frank, and M. C. Becker (1957) Steps in the production of motoneuron spikes. J Gen Physiol 40:735–752

    PubMed  CAS  Google Scholar 

  • Fyffe, R. E. (1991) Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. J Neurophysiol 65:1134–49

    PubMed  CAS  Google Scholar 

  • Fyffe, R. E., and A. R. Light (1984) The ultrastructure of group Ia afferent fiber synapses in the lumbosacral spinal cord of the cat. Brain Res 300:201–9

    PubMed  CAS  Google Scholar 

  • Fyffe, R. E. W., F. J. Alvarez, J. C. Pearson, D. Harrington, and D. E. Dewey (1993) Modulation of motoneuron activity: Distribution of glycine receptors and serotonergic inputs on motoneuron dendrites. The Physiologist 36:A–11

    Google Scholar 

  • Gao, B. X., and L. Ziskind-Conhaim (1998) Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80:3047–61

    PubMed  CAS  Google Scholar 

  • Glenn, L. L. (1988) Overestimation of the electrical length of neuron dendrites and synaptic electrotonic attenuation. Neurosci Lett 91:112–9

    PubMed  CAS  Google Scholar 

  • Gorassini, M., D. J. Bennett, O. Kiehn, T. Eken, and H. Hultborn (1999) Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties. J Neurophysiol 82:709–17

    PubMed  CAS  Google Scholar 

  • Gorassini, M. A., D. J. Bennett, and J. F. Yang (1998) Self-sustained firing of human motor units. Neurosci Lett 247:13–16

    PubMed  CAS  Google Scholar 

  • Granit, R., D. Kernell, and Y. Lamarre (1966) Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents. J Physiol (Lond) 187:379–99

    CAS  Google Scholar 

  • Granit, R., D. Kernell, and G. K. Shortess (1963) Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. J Physiol (Lond) 168:911–931

    CAS  Google Scholar 

  • Granit, R., and B. Renkin (1961) Net depolarization and discharge rate of motoneurones, as measured by recurrent inhibition. J Physiol (Lond) 158:461–475

    CAS  Google Scholar 

  • Grillner, S., T. Hongo, and S. Lund (1970) The vestibulospinal tract. Effects on alphamotoneurones in the lumbosacral spinal cord in the cat. Exp Brain Res 10:94–120

    PubMed  CAS  Google Scholar 

  • Guertin, P. A., and J. Hounsgaard (1998a) Chemical and electrical stimulatin induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles. Neurosci Lett 245:5–8

    PubMed  CAS  Google Scholar 

  • Guertin, P. A., and J. Hounsgaard (1998b) NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. J Neurophysiol 80:3380–2

    PubMed  CAS  Google Scholar 

  • Guertin, P. A., and J. Hounsgaard (1999) Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials. Neuroscience 88:353–8

    PubMed  CAS  Google Scholar 

  • Gustafsson, B., and D. McCrea (1984) Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. J Physiol (Lond) 347:431–51

    CAS  Google Scholar 

  • Gustafsson, B., and M. J. Pinter (1984a) An investigation of threshold properties among cat spinal alpha-motoneurones. J Physiol (Lond) 357:453–83

    CAS  Google Scholar 

  • Gustafsson, B., and M. J. Pinter (1984b) Relations among passive electrical properties of lumbar alpha-motoneurones of the cat. J Physiol (Lond) 356:401–31

    CAS  Google Scholar 

  • Gustafsson, B., and M. J. Pinter (1985) Factors determining the variation of the afterhyperpolarization duration in cat lumbar alpha-motoneurones. Brain Res 326:392–5

    PubMed  CAS  Google Scholar 

  • Gutman, A. M. (1971) Further remarks on the effectiveness of dendrite synapses. Biophysics 16:131–138

    Google Scholar 

  • Gutman, A. M. (1991) Bistability of dendrites. Int J Neural Sys 1:291–304

    Google Scholar 

  • Gydikov, A., and D. Kosarov (1973) Physiological characteristics of the tonic and phasic motor units in human muscles. In: A. Gydikov, N. Tankov and D. Kosarov (eds.). Motor Control. New York: Plenum Press, pp 75–94

    Google Scholar 

  • Harada, Y., and T. Takahashi (1983) The calcium component of the action potential in spinal motoneurones of the rat. J Physiol (Lond) 335:89–100

    CAS  Google Scholar 

  • Harrison, P. J., and A. Taylor (1981) Individual excitatory post-synaptic potentials due to muscle spindle Ia afferents in cat triceps surae motoneurones. J Physiol (Lond) 312:455–470

    CAS  Google Scholar 

  • Heckman, C. J. (1994) Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. J Neurophysiol 71:1727–1739

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and M. D. Binder (1988) Analysis of effective synaptic currents generated by homonymous Ia afferent fibers in motoneurons of the cat. J Neurophysiol 60:1946–66

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and M. D. Binder (1990) Neural mechanisms underlying the orderly recruitment of motoneurons. In: M. D. Binder and L. M. Mendell (eds). The Segmental Motor System. New York: Oxford University Press, pp 182–204

    Google Scholar 

  • Heckman, C. J., and M. D. Binder (1991a) Analysis of Ia-inhibitory synaptic input to cat spinal motoneurons evoked by vibration of antagonist muscles. J Neurophysiol 66:1888–1893

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and M. D. Binder (1991b) Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool. J Neurophysiol 65:952–67

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and M. D. Binder (1993a) Computer simulations of motoneuron firing rate modulation. J Neurophysiol 69:1005–8

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and M. D. Binder (1993b) Computer simulations of the effects of different synaptic input systems on motor unit recruitment. J Neurophysiol 70:1827–1840

    PubMed  CAS  Google Scholar 

  • Henneman, E. (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    PubMed  CAS  Google Scholar 

  • Henneman, E., and L. M. Mendell (1981) Functional organization of motoneuron pool and its inputs. In: V. B. Brooks (eds). Handbook of Physiology, The Nervous System, Motor Control. Bethesda, MD: American Physiological Society, pp 423–507

    Google Scholar 

  • Henneman, E., G. Somjen, and D. O. Carpenter (1965) Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol 28:599–620

    PubMed  CAS  Google Scholar 

  • Hille, B. (1992) Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer Assoc. Inc.

    Google Scholar 

  • Hochman, S., L. M. Jordan, and B. J. Schmidt (1994) TTX-resistant NMDA receptor-mediated voltage oscillations in mammalian lumbar motoneurons. J Neurophysiol 72:2559–62

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 116:500–544

    Google Scholar 

  • Hodgkin, A. L., and S. Nakajima (1972) The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol (Lond) 221:105–120

    CAS  Google Scholar 

  • Holmes, W. R., I. Segev, and W. Rall (1992) Interpretation of time constant and electronic length estimates in multicylinder or branched neuronal structures. J Neurophysiol 68:1401–20

    PubMed  CAS  Google Scholar 

  • Holstege, J. C. (1991) Ultrastructural evidence for GABAergic brain stem projections to spinal motoneurons in the rat. J Neurosci 11:159–67

    PubMed  CAS  Google Scholar 

  • Hongo, T., E. Jankowska, and A. Lundberg (1969) The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Exp Brain Res 7:344–64

    PubMed  CAS  Google Scholar 

  • Hori, Y., and K. Kanda (1996) Developmental alterations in NMDA receptor-mediated currents in neonatal rat spinal motoneurons. Neurosci Lett 205:99–102

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., H. Hultborn, B. Jespersen, and O. Kiehn (1984) Intrinsic membrane properties causing a bistable behavior of α-motoneurones. Exp Brain Res 55:391–394

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., H. Hultborn, B. Jespersen, and O. Kiehn (1988) Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol (Lond) 405:345–67

    CAS  Google Scholar 

  • Hounsgaard, J., and O. Kiehn (1985) Ca++ dependent bistability induced by serotonin in spinal motoneurons. Exp Brain Res 57:422–5

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., and O. Kiehn (1989) Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol (Lond) 414:265–82

    CAS  Google Scholar 

  • Hounsgaard, J., and O. Kiehn (1993) Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J Physiol (Lond) 468:245–59

    CAS  Google Scholar 

  • Hounsgaard, J., and I. Mintz (1988) Calcium conductance and firing properties of spinal motoneurones in the turtle. J Physiol (Lond) 398:591–603

    CAS  Google Scholar 

  • Howe, J. R., and J. M. Ritchie (1992) Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. J Physiol (Lond) 455:529–566

    CAS  Google Scholar 

  • Hsiao, C. F., C. A. DelNegro, P. R. Trueblood, and S. H. Chandler (1998) Ionic basis for serotonin-induced bistable membrane properties in guinea pig trigeminal motoneurons. J Neurophysiol 79:2847–2856

    PubMed  CAS  Google Scholar 

  • Hsiao, C. F., P. R. Trueblood, M. S. Levine, and S. H. Chandler (1997) Multiple effects of serotonin on membrane properties of trigeminal motoneurons in vitro. J Neurophysiol 77:2910–2924

    PubMed  CAS  Google Scholar 

  • Hultborn, H., R. Katz, and R. Mackel (1988) Distribution of recurrent inhibition within a motor nucleus. II. Amount of recurrent inhibition in motoneurons to fast and slow units. Acta Physiol Scand 134:363–374

    PubMed  CAS  Google Scholar 

  • Hultborn, H., and O. Kiehn (1992) Neuromodulation of vertebrate motor neuron membrane properties. Curr Opin Neurobiol 2:770–5

    PubMed  CAS  Google Scholar 

  • Hultborn, H., S. Lindstrom, and H. Wigstrom (1979) On the function of recurrent inhibition in the spinal cord. Exp Brain Res 37:399–403

    PubMed  CAS  Google Scholar 

  • Hunter, I., and M. J. Korenberg (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55:135–144

    PubMed  CAS  Google Scholar 

  • Iansek, R., and S. J. Redman (1973a) The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J Physiol (Lond) 234:665–88

    CAS  Google Scholar 

  • Iansek, R., and S. J. Redman (1973b) An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J Physiol (Lond) 234:613–36

    CAS  Google Scholar 

  • Inoue, T., S. Itoh, M. Kobayashi, Y. Kang, R. Matsuo, S. Wakisaka, and T. Morimoto (1999) Serotonergic modulation of the hyperpolarizing spike afterpotential in rat jaw-closing motoneurons by PKA and PKC. J Neurophysiol 82:626–37

    PubMed  CAS  Google Scholar 

  • Jack, J. J., S. Miller, R. Porter, and S. J. Redman (1971) The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. J Physiol (Lond) 215:353–380

    CAS  Google Scholar 

  • Jack, J. J., and S. J. Redman (1971) An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J Physiol (Lond) 215:321–52

    CAS  Google Scholar 

  • Jack J. J., S. J. Redman, and K. Wong (1981) The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. J Physiol (Lond) 321:65–96

    CAS  Google Scholar 

  • Jack, J. J. B., D. Noble, and R. W. Tsien (1975) Electric Current Flow in Excitable Cells. Oxford: Clarendon Press, pp Pages

    Google Scholar 

  • Jacobs, B. L., and C. A. Fornal (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 6:346–352

    Google Scholar 

  • Jankowska, E. (1992) Interneuonal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    PubMed  CAS  Google Scholar 

  • Jiang, Z. G., and N. J. Dun (1986) Presynaptic suppression of excitatory postsynaptic potentials in rat ventral horn neurons by muscarinic agonists. Brain Res 381:182–6

    PubMed  CAS  Google Scholar 

  • Johnston, D., J. C. Magee, C. M. Colbert, and B. R. Christie (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186

    PubMed  CAS  Google Scholar 

  • Jung, H.-Y., T. Mickus, and N. Spruston (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17:6639–6646

    PubMed  CAS  Google Scholar 

  • Kalb, R. G., M. S. Lidow, M. J. Halsted, and S. Hockfield (1992) N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn. Proc Natl Acad Sci USA 89:8502–6

    PubMed  CAS  Google Scholar 

  • Kanosue, K., M. Yoshida, K. Akazawa, and K. Fuji (1979) The Number of Active Motor Units and Their Firing Rates in Voluntary Contraction of Human Brachialis Muscle. Jap J Physiol 29:427–444

    CAS  Google Scholar 

  • Katakura, N., and S. H. Chandler (1990) An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig. J Neurophysiol 63:356–69

    PubMed  CAS  Google Scholar 

  • Kawato, M. (1984) Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol 111:149–69

    PubMed  CAS  Google Scholar 

  • Kellerth, J.-O., C.-H. Berthold, and S. Conradi (1979) Electron microscopic studies of serially sectioned cat spinal α-motoneurons: III. Motoneurons innervating fastwitch (Type FR) units of the gastrocnemius muscle. J Comp Neurol 184

    Google Scholar 

  • Kellerth, J.-O., S. Conradi, and C.-H. Berthold (1983) Electron microscopic studies of serially sectioned cat spinal α-motoneurons: V. Motoneurons innervating fasttwitch (Type FF) units of the gastrocnemius muscle. J Comp Neurol 214:451–458

    Google Scholar 

  • Kernell, D. (1965a) The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65:65–73

    Google Scholar 

  • Kernell, D. (1965b) High frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65:74–86

    Google Scholar 

  • Kernell, D. (1965c) The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiol Scand 65:87–100

    Google Scholar 

  • Kernell, D. (1966) The repetitive discharge of motoneurones. In: R. Granit (eds.), Muscular afferents and Motor Control. Nobel Symp., I. Stockholm: Almqvist and Wiksell, pp 351–362

    Google Scholar 

  • Kernell, D. (1968) The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones. Brain Res 11:685–7

    PubMed  CAS  Google Scholar 

  • Kernell, D. (1970) Synaptic conductance changes and the repetitive impulse discharge of spinal motoneurones. Brain Res 15:291–294

    Google Scholar 

  • Kernell, D. (1979) Rhythmic properties of motoneurones innervating muscle fibres of different speed in m. gastrocnemius medialis of the cat. Brain Res 160:159–62

    PubMed  CAS  Google Scholar 

  • Kernell, D. (1983) Functional properties of spinal motoneurons and gradation of muscle force. Adv Neurol 39:213–26

    PubMed  CAS  Google Scholar 

  • Kernell, D., O. Eerbeek, and B. A. Verhey (1983) Relation between isometric force and stimulus rate in cat's hindlimb motor units of different twitch contraction time. Exp Brain Res 50:220–7

    PubMed  CAS  Google Scholar 

  • Kernell, D., and A. W. Monster (1981) Threshold current for repetitive impulse firing in motoneurones innervating muscle fibres of different fatigue sensitivity in the rat. Brain Res 229:193–6

    PubMed  CAS  Google Scholar 

  • Kernell, D., and A. W. Monster (1982a) Motoneuron properties and motor fatigue. Exp Brain Res 46:197–204

    PubMed  CAS  Google Scholar 

  • Kernell, D., and A. W. Monster (1982b) Time course and properties of late adaptation in spinal motoneurones of the cat. Exp Brain Res 46:191–6

    PubMed  CAS  Google Scholar 

  • Kernell, D., and H. Sjoholm (1973) Repetitive impulse firing: comparisons between neurone models based on ‘voltage clamp equations’ and spinal motoneurones. Acta Physiol Scand 87:40–56

    PubMed  CAS  Google Scholar 

  • Kernell, D., and B. Zwaagstra (1981) Input conductance axonal conduction velocity and cell size among hindlimb motoneurones of the cat. Brain Res 204:311–26

    PubMed  CAS  Google Scholar 

  • Kernell, D., and B. Zwaagstra (1989a) Dendrites of cat's spinal motoneurones: relationship between stem diameter and predicted input conductance. J Physiol (Lond) 413:255–69

    CAS  Google Scholar 

  • Kernell, D., and B. Zwaagstra (1989b) Size and remoteness: two relatively independent parameters of dendrites, as studied for spinal motoneurones of the cat. J Physiol (Lond) 413:233–54

    CAS  Google Scholar 

  • Kiehn O. (1991) Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour. Trends Neurosci 14:68–73

    PubMed  CAS  Google Scholar 

  • Kiehn, O., and T. Eken (1997) Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? J Neurophysiol 78:3061–8

    PubMed  CAS  Google Scholar 

  • Kiehn, O., and T. Eken (1998) Functional role of plateau potentials in vertebrate motor neurons. Cur Opin Neurobiol 8:746–752

    CAS  Google Scholar 

  • Kiehn, O., J. Erdal, T. Eken, and T. Bruhn (1996) Selective depletion of spinal monoamines changes the rat soleus EMG from a tonic to a more phasic pattern. J Physiol (Lond). 492:173–184

    CAS  Google Scholar 

  • Kiehn, O., and R. M. Harris-Warrick (1992) 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. J Neurophysiol 68:496–508

    PubMed  CAS  Google Scholar 

  • Kim, Y. I., and S. H. Chandler (1995) NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro. J Neurophysiol 74:334–46

    PubMed  CAS  Google Scholar 

  • Kirkwood, P. A. (1979) On the use and interpretation of crosscorrelation measurements in the mammalian central nervous system. J Neurosci Methods 1:107–132

    PubMed  CAS  Google Scholar 

  • Kirkwood, P. A., and T. A. Sears (1978) The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. J Physiol (Lond) 275:103–134

    CAS  Google Scholar 

  • Knox, C. K. (1974) Cross-correlation functions for a neuronal model. Biophys J 14:567–582

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., T. Inoue, R. Matsuo, Y. Masuda, O. Hidaka, Y. N. Kang, and T. Morimoto (1997) Role of calcium conductances on spike afterpotentials in rat trigeminal motoneurons. J Neurophysiol 77:3272–3283

    Google Scholar 

  • Korogod, S. M., and I. B. Kulagina (1998) Geometry-induced features of current transfer in neuronal dendrites with tonically activated conductances. Biol Cybern 79:231–40

    PubMed  CAS  Google Scholar 

  • Krnjevi'c, K., and A. Lisiewicz (1972) Injections of calcium ions into spinal motoneurones. J Physiol (Lond) 225:363–390

    Google Scholar 

  • Krnjevi'c, K., E. Puil, and R. Werman (1978) EGTA and motoneuronal afterpotentials. J Physiol (Lond) 275:199–223

    Google Scholar 

  • Kuno,M., and J. T. Miyahara (1969) Non-linear summation of unit synaptic potentials in spinal motoneurons of the cat. J Physiol (Lond) 201:465–477

    CAS  Google Scholar 

  • Lagerback, P. A., and B. Ulfhake (1987) Ultrastructural observations on beaded alpha-motoneuron dendrites. Acta Physiol Scand 129:61–6

    PubMed  CAS  Google Scholar 

  • Lape, R., and A. Nistri (1999) Voltage-activated K+ currents of hypoglossal motoneurons in a brain stem slice preparation from the neonatal rat. J Neurophysiol 81:140–8

    PubMed  CAS  Google Scholar 

  • Larkman, P. M., and J. S. Kelly (1992) Ionic mechanisms mediating 5-hydroxytryptamine-and noradrenaline-evoked depolarization of adult rat facial motoneurones. J Physiol (Lond) 456:473–90

    CAS  Google Scholar 

  • Larkman, P. M., and J. S. Kelly (1998) Characterization of 5-HT-sensitive potassium conductances in neonatal rat facial motoneurones in vitro. J Physiol. (Lond) 508:67–81

    CAS  Google Scholar 

  • Larkum, M. E., M. G. Rioult, and H.-R. Luscher (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154–170

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and C. J. Heckman (1996) Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. J Neurophysiol 76:2107–2110

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and C. J. Heckman (1998a) Bistability in spinal motoneurons in vivo: Systematic variations in persistent inward currents. J Neurophysiol 80:583–593

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and C. J. Heckman (1998b) Bistability in spinal motoneurons in vivo: Systematic variations in rhythmic firing patterns. J Neurophysiol 80:572–582

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and C. J. Heckman (1999a) Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. J Neurophysiol 81:2164–74

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and C. J. Heckman (1999b) Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo. J Neurophysiol 82:2518–27

    PubMed  CAS  Google Scholar 

  • Lee, R. H. and Heckman, C. J. (2000) Adjustable amplification of synaptic input in the dendrites of spinal motoneurons In vivo. J Neurosci 20:6734–40

    PubMed  CAS  Google Scholar 

  • Lee, Y. W., and M. Schetzen (1965) Measurement of the Wiener kernels of a nonlinear system by cross-correlation. International Journal of Control 2:237–254

    Google Scholar 

  • Levine, E. S., W. J. Litto, and B. L. Jacobs (1990) Activity of cat locus coeruleus noradrenergic neurons during the defense reaction. Brain Res 531:189–195

    PubMed  CAS  Google Scholar 

  • Lindsay, A. D., and M. D. Binder (1991) Distribution of effective synaptic currents underlying recurrent inhibition in cat triceps surae motoneurons. J Neurophysiol 65:168–177

    PubMed  CAS  Google Scholar 

  • Lindsay, A. D., and J. L. Feldman (1993) Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin. J Physiol (Lond) 461:213–33

    CAS  Google Scholar 

  • Lipowsky, R., T. Gillessen, and C. Alzheimer (1996) Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramical cells. J Neurophysiol 76:2181–2191

    PubMed  CAS  Google Scholar 

  • Lips, M. B., and B. U. Keller (1998) Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse. J Physiol (Lond) 511:105–17

    CAS  Google Scholar 

  • Llinas, R. R. (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654–1664

    PubMed  CAS  Google Scholar 

  • London, M., C. Meunier, and I. Segev (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19:8219–33

    PubMed  CAS  Google Scholar 

  • Luscher, H.-R., D. Thurbon, T. Hofstetter, and S. J. Redman (1997) Dendritic recording of action potentials and brief voltage transients in motoneurons of rat spinal cord slices. Soc Neurosci Abstr 23:1301

    Google Scholar 

  • Lux, H. D., P. Schubert, and G. W. Kreutzberg (1970) Direct matching of morphological and electrophysiological data in cat spinal motoneurones. In: P. Anderson and J. K. S. Jansen (eds). Excitatory Synaptic Mechanisms. Oslo: Universitefsforlaget, pp 189–198

    Google Scholar 

  • Madison, D. V., and R. A. Nicoll (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol (Lond) 354:319–31

    CAS  Google Scholar 

  • Major, G., A. Larkman, P. Jonas, B. Sakmann, and J. J. B. Jack (1992) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638

    Google Scholar 

  • Maltenfort M.G., C.J. Heckman, and W.Z. Rymer (1998) Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. J Neurophysiol 80:309–323

    PubMed  CAS  Google Scholar 

  • Marmarelis, P. Z., and V. Z. Marmarelis (1978) Analysis of Physiological Systems: The White Noise Approach. New York: Plenum, pp Pages

    Google Scholar 

  • Mauritz, K. H., W. R. Schlue, D. W. Richter, and A. C. Nacimiento (1974) Membrane conductance course during spike intervals and repetitive firing in cat spinal motoneurons. Brain Res 76:223–233

    PubMed  CAS  Google Scholar 

  • Mayer, M. L., and G. L. Westbrook (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Progr Neurobiol 28:197–276

    CAS  Google Scholar 

  • McBain, C. J., and M. L. Mayer (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–60

    PubMed  CAS  Google Scholar 

  • McCobb, D. P., and K. G. Beam (1991) Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high voltage-activated calcium channels. Neuron 7:119–27

    PubMed  CAS  Google Scholar 

  • McLarnon, J. G. (1995) Potassium currents in motoneurones. Progr Neurobiol 47:513–531

    CAS  Google Scholar 

  • Mel, B. W. (1994) Information processing in dendritic trees. Neural Computation 6:1031–1085

    Google Scholar 

  • Midtgaard, J. (1994) Processing of Information from Different Sources-Spatial Synaptic Integration in the Dendrites of Vertebrate CNS Neurons. Trends in Neurosciences 17:166–173

    PubMed  CAS  Google Scholar 

  • Midtgaard, J. (1996) Active membrane properties and spatiotemporal synaptic integration in dendrites of vertebrate neurones. Acta Physiologica Scandinavica 157:395–401

    PubMed  CAS  Google Scholar 

  • Miller, J.F., K.D. Paul, W.Z. Rymer, and C.J. Heckman (1997) Intrathecal 2-amino-7-phophonohetanoic acid (AP-7) attenuates clasp knife reflex in decerebrate cat. Soc Neurosci Abstr 23:1039

    Google Scholar 

  • Monster, A. W., and H. Chan (1977) Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol 40:1432–1443

    PubMed  CAS  Google Scholar 

  • Moore, J. A., and K. Appenteng (1991) The morphology and electrical geometry of rat jaw-elevator motoneurones. J Physiol (Lond) 440:325–43

    CAS  Google Scholar 

  • Mosfeldt-Laursen, A., and J. C. Rekling (1989) Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro. Neuroscience 30:619–37

    PubMed  CAS  Google Scholar 

  • Munson, J. B. (1990) Synaptic inputs to type-identified motor units. In: M. D. Binder and L. M. Mendell (eds.). The Segmental Motor System. New York: Oxford University Press, pp 291–307

    Google Scholar 

  • Munson, J. B., J. W. Fleshman, and G. W. Sypert (1980) Properties of single-fiber spindle group II EPSPs in triceps surae motoneurons. J Neurophysiol 44:713–725

    PubMed  CAS  Google Scholar 

  • Munson, J. B., G. W. Sypert, J. E. Zengel, S. A. Lofton, and J. W. Fleshman (1982) Monosynaptic projections of individual spindle group II afferents to type-identified medial gastrocnemius motoneurons in the cat. J Neurophysiol 48

    Google Scholar 

  • Musick, J. R. (1999) Mechanisms of Spike-Frequency Adaptation in Hypoglossal Motoneurons. Ph.D. Dissertation, University of Washington

    Google Scholar 

  • Neher, E. (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442

    PubMed  CAS  Google Scholar 

  • Nelson, P. G., and K. Frank (1964) La production du potentiel d'action etudee par la technique du voltage imposee sur le motoneurone du chat. Actual neurophysiol 5:15–35

    CAS  Google Scholar 

  • Nelson, P. G., and H. D. Lux (1970) Some electrical measurements of motoneurone parameters. Biophys J 10:55–73

    PubMed  CAS  Google Scholar 

  • Nishimura, Y., P. C. Schwindt, and W. E. Crill (1989) Electrical properties of facial motoneurons in brainstem slices from guinea pig. Brain Res 502:127–42

    PubMed  CAS  Google Scholar 

  • Nistri, A., N. D. Fisher, and M. Gurnell (1990) Block by the neuropeptide TRH of an apparently novel K+ conductance of rat motoneurones. Neurosci Lett 120:25–30

    PubMed  CAS  Google Scholar 

  • O'Brien, J. A., J. S. Isaacson, and A. J. Berger (1997) NMDA and non-NMDA receptors are co-localized at excitatory synapses of rat hypoglossal motoneurons. Neurosci Lett 227:5–8

    PubMed  Google Scholar 

  • Oakley, J. C., P. C. Schwindt, and W. E. Crill (1999) Pruning the dendritic arbor of neocortical neurons with calcium plateaus: A gain control mechanism. Soc Neurosci Abstr 25:1741

    Google Scholar 

  • Palecek, J., M. B. Lips, and B. U. Keller (1999) Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol (Lond) 520:485–502

    CAS  Google Scholar 

  • Palecek, J. I., G. Abdrachmanova, V. Vlachova, and L. Vyklick, Jr. (1999) Properties of NMDA receptors in rat spinal cord motoneurons. Eur J Neurosci 11:827–36

    PubMed  CAS  Google Scholar 

  • Parkis, M. A., D. A. Bayliss, and A. J. Berger (1995) Actions of norepinephrine on rat hypoglossal motoneurons. J Neurophysiol 74:1911–1919

    PubMed  CAS  Google Scholar 

  • Perkins, K. L., and R. K. S. Wong (1995) Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal pyramidal cells. J Neurophysiol 73:911–915

    PubMed  CAS  Google Scholar 

  • Perrier, J. F., and J. Hounsgaard (1999) Ca(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons. J Neurophysiol 82:730–5

    PubMed  CAS  Google Scholar 

  • Pierce, J. P., and L. M. Mendell (1993) Quantitative Ultrastructure of Ia Boutons in the Ventral Horn-Scaling and Positional Relationships. J Neurosci 13:4748–4763

    PubMed  CAS  Google Scholar 

  • Pinco, M., and L.-T. A. (1993) Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord. J Neurophysiol 70:406–17

    PubMed  CAS  Google Scholar 

  • Pinter, M. J., R. L. Curtis, and M. J. Hosko (1983) Voltage threshold and excitability among variously sized cat hindlimb motoneurons. J Neurophysiol 50:644–57

    PubMed  CAS  Google Scholar 

  • Poliakov, A., R. K. Powers, and M. D. Binder (1997) Functional identification of the input-output transforms of motoneurones in the rat and cat. J Physiol (Lond) 504:401–424

    CAS  Google Scholar 

  • Poliakov, A. V., R. K. Powers, A. Sawczuk, and M. D. Binder (1996) Effects of background noise on the response of rat and cat motoneurones to excitatory current transients. J Physiol (Lond) 495:143–157

    Google Scholar 

  • Powers, R. K. (1993) A variable-threshold motoneuron model that incorporates time-and voltage-dependent potassium and calcium conductances. J Neurophysiol 70:246–62

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and M. D. Binder (1985a) Determination of afferent fibers mediating oligosynaptic group I input to cat medial gastrocnemius motoneurons. J Neurophysiol 53:518–29

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and M. D. Binder (1985b) Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. J Neurophysiol 53:497–517

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and M. D. Binder (1995) Effective synaptic current and motoneuron firing rate modulation. J Neurophysiol 74:793–801

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and M. D. Binder (1999) Models of spike encoding and their use in the interpretation of motor unit recordings in man. In: Peripheral and Spinal Mechanism in the Neural Control of Movement. Progress in Brain Research Vol. 123. M.D. Binder (ed) Elevier: North-Holland, pp 83–98

    Google Scholar 

  • Powers, R. K., and M. D. Binder (2000) Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons. J Neurophysiol 83:483–500

    PubMed  CAS  Google Scholar 

  • Powers, R. K., F. R. Robinson, M. A. Konodi, and M. D. Binder (1992) Effective synaptic current can be estimated from measurements of neuronal discharge. J Neurophysiol 68:964–8

    PubMed  CAS  Google Scholar 

  • Powers, R. K., F. R. Robinson, M. A. Konodi, and M. D. Binder (1993) Distribution of rubrospinal synaptic input to cat triceps surae motoneurons. J Neurophysiol 70:1460–1468

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and W. Z. Rymer (1988) Effects of acute dorsal spinal hemisection on motoneuron discharge in the medial gastrocnemius of the decerebrate cat. J Neurophysiol 59:1540–1556

    PubMed  CAS  Google Scholar 

  • Powers, R. K., A. Sawczuk, J. R. Musick, and M. D. Binder (1999) Multiple mechanisms of spike-frequency adaptation in motoneurones. J Physiol (Paris) 93:101–114

    CAS  Google Scholar 

  • Powers, R. K. D. B., and M. D. Binder (1996) Experimental evaluation of input-output models of motoneuron discharge. J Neurophysiol 75:367–379

    PubMed  CAS  Google Scholar 

  • Prather, J. F., Powers, R. K., and T. C. Cope (2001) Amplification and linear summation of synaptic effects on motoneuron firing rate. J Neurophysiol 85:43–53

    PubMed  CAS  Google Scholar 

  • Rajaofetra, N., J. L. Ridet, P. Poulat, L. Marlier, F. Sandillon, M. Geffard, and A. Privat (1992) Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline. J Neurocytol 21:481–94

    PubMed  CAS  Google Scholar 

  • Rall, W. (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    PubMed  CAS  Google Scholar 

  • Rall, W. (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: R. Reiss (eds.). Neural Theory and Modelling. Stanford, CA: Stanford University Press, pp 73–97

    Google Scholar 

  • Rall, W. (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–68

    PubMed  CAS  Google Scholar 

  • Rall, W. (1977) Core conductor theory and cable properties of neurons. In: (eds.). Handbook of Physiology, The Nervous System, Cellular Biology of Neurons. Bethesda, MD: American Physiological Society, pp 39–97

    Google Scholar 

  • Rall, W., R. E. Burke, W. R. Holmes, J. J. Jack, S. J. Redman, and I. Segev (1992) Matching dendritic neuron models to experimental data. Physiol Rev 86

    Google Scholar 

  • Rall, W., R. E. Burke, T. G. Smith, P. G. Nelson, and K. Frank (1967) Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol 30:1169–93

    PubMed  CAS  Google Scholar 

  • Rall, W., and J. Rinzel (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–87

    PubMed  CAS  Google Scholar 

  • Ramirez-Leon, V., and B. Ulfhake (1993) GABA-Like Immunoreactive Innervation and Dendro-Dendritic Contacts in the Ventrolateral Dendritic Bundle in the Cat S1 Spinal Cord Segment—An Electron Microscopic Study Exp Brain Res 97:1–12

    CAS  Google Scholar 

  • Redman, S. (1976) A quantitative approach to the integrative function of dendrites. In: R. Porter (eds.). International Review of Physiology: Neurophysiology. Baltimore: University Park Press, pp 1–36

    Google Scholar 

  • Redman, S., and B. Walmsley (1983a) Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group la synapses. J Physiol (Lond) 343:135–145

    CAS  Google Scholar 

  • Redman, S. J., and B. Walmsley (1983b) The time course of synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. J Physiol (Lond) 343:117–33

    CAS  Google Scholar 

  • Rekling, J. C. (1990) Excitatory effects of thyrotropin-releasing hormone in hypoglossal motoneurons. Brain Res 510:175–179

    PubMed  CAS  Google Scholar 

  • Rekling, J. C., and J. L. Feldman (1997) Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J Neurophysiol 78:2483–2492

    PubMed  CAS  Google Scholar 

  • Reckling, J. C., G. D. Funk, D. A. Bayliss, X-W. Dong and J. L. Feldman (2000) Synaptic control of motoneuronal excitability. Physiological Reviews 80:767–852.

    Google Scholar 

  • Reyes, A. D., and E. E. Fetz (1993) Effects of Transient Depolarizing Potentials on the Firing Rate of Cat Neocortical Neurons. J Neurophysiol 69:1673–1683

    PubMed  CAS  Google Scholar 

  • Richter, D. W., W. R. Schlue, K. H. Mauritz, and A. C. Nacimiento (1974) Comparison of membrane properties of the cell body and the initial part of the axon of phasic motoneurones in the spinal cord of the cat. Exp Brain Res 21:193–206

    Google Scholar 

  • Rinzel, J., and W. Rall (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14:759–90

    PubMed  CAS  Google Scholar 

  • Rose, P. K. (1981) Distribution of dendrites from biventer cervicis and complexus motoneurons stained intracellularly with horseradish peroxidase in the adult cat. J Comp Neurol 197:395–409

    PubMed  CAS  Google Scholar 

  • Rose, P. K., and P. Brennan (1989) Somatic shunts in neck motoneurons of the cat. Soc Neurosci Abstr 15:922

    Google Scholar 

  • Rose, P. K., and S. Cushing (1999) Non-linear summation of synaptic currents on spinal motoneurons: Lessons from simulations of the behavior of anatomically realistic models. In: M. D. Binder (eds). Peripheral and Spinal Mechanisms in the Neural Control of Movement. Amsterdam: Elsevier, pp 99–107

    Google Scholar 

  • Rose, P. K., S. A. Keirstead, and S. J. Vanner (1985) A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles. J Comp Neurol 239:89–107

    PubMed  CAS  Google Scholar 

  • Rose, P. K., and H. M. Neuber (1991) Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat. J Comp Neurol 307:259–80

    PubMed  CAS  Google Scholar 

  • Rose, P. K., and S. J. Vanner (1988) Differences in somatic and dendritic specific membrane resistivity of spinal motoneurons: an electrophysiological study of neck and shoulder motoneurons in the cat. J Neurophysiol 60:149–66

    PubMed  CAS  Google Scholar 

  • Rossignol, S., C. Chau, E. Brustein, N. Giroux, L. Bouyer, H. Barbeau, and T. A. Reader (1998) Pharmacological activation and modulation of the central pattern generator for locomotion in the cat. Ann NY Acad Sci 860:346–59

    PubMed  CAS  Google Scholar 

  • Rudy, B. (1981) Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J Physiol (Lond) 312:531–49

    CAS  Google Scholar 

  • Rudy, B. (1988) Diversity and ubiquity of K channels. Neurosci 25:729–749

    CAS  Google Scholar 

  • Safronov, B. V., and W. Vogel (1995) Single voltage-activated Na+ and K+ channels in the somata of rat motoneurones. J Physiol (Lond) 487:91–106

    CAS  Google Scholar 

  • Safronov, B. V., and W. Vogel (1996) Properties and functions of Na+-activated K+ channels in the soma of rat motoneurones. J Physiol (Lond) 497:727–734

    CAS  Google Scholar 

  • Sah, P. (1992) Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. J Neurophysiol 68:2237–47

    PubMed  CAS  Google Scholar 

  • Sah, P. (1996) Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation. Trends in Neurosciences 19:150–154

    PubMed  CAS  Google Scholar 

  • Saha, S., K. Appenteng, and T. F. Batten (1991) Light and electron microscopical localisation of 5-HT-immunoreactive boutons in the rat trigeminal motor nucleus. Brain Res 559:145–8

    PubMed  CAS  Google Scholar 

  • Sakai, H. M. (1992) White-noise analysis in neurophysiology. Physiological Reviews 72:491–505

    PubMed  CAS  Google Scholar 

  • Sawczuk, A., R. K. Powers, and M. D. Binder (1995a) Intrinsic properties of motoneurons: Implications for muscle fatigue. In: S. Gandevia, R. M. Enoka, A. J. McComas, D. J. Stuart and C. K. Thomas (eds). Fatigue: Neural and Muscular Mechanisms. New York: Plenum Press, pp 123–134

    Google Scholar 

  • Sawczuk, A., R. K. Powers, and M. D. Binder (1995b) Spike frequency adaptation studied in hypoglossal motoneurons of the rat. J Neurophysiol 73:1799–1810

    PubMed  CAS  Google Scholar 

  • Sawczuk, A., R. K. Powers, and M. D. Binder (1997) Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. J Neurophysiol 78:2246–2253

    PubMed  CAS  Google Scholar 

  • Schlue, W. R., D. W. Richter, K. H. Mauritz, and A. C. Nacimiento (1974) Mechanisms of accommodation to linearly rising currents in cat spinal motoneurones. J Neurophysiol 37:310–315

    PubMed  CAS  Google Scholar 

  • Schmidt, B. J., S. Hochman, and J. N. MacLean (1998) NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord. Ann NY Acad Sci 860:189–202

    PubMed  CAS  Google Scholar 

  • Schwindt, P., and W. E. Crill (1977) A persistent negative resistance in cat lumbar motoneurons. Brain Res 120:173–8

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C. (1973) Membrane-potential trajectories underlying motoneuron rhythmic firing at high rates. J Neurophysiol 36:434–9

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. H. Calvin (1972) Membrane potential trajectories between spikes underlying motoneuron rhythmic firing. J Neurophysiol 35:311–325

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. H. Calvin (1973a) Equivalence of synaptic and injected current in determining the membrane potential trajectory during motoneuron rhythmic firing. Brain Res 59:389–94

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. H. Calvin (1973b) Nature of conductances underlying rhythmic firing in cat spinal motoneurons. J Neurophysiol 36:955–73

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. E. Crill (1980a) Effects of barium on cat spinal motoneurons studied by voltage clamp. J Neurophysiol 44:827–46

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. E. Crill (1980b) Properties of a persistent inward current in normal and TEA-injected motoneurons. J Neurophysiol 43:1700–24

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. E. Crill (1980c) Role of a persistent inward current in motoneuron bursting during spinal seizures. J Neurophysiol 43:1296–1318

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. E. Crill (1982) Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. J Neurophysiol 48:875–90

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., and W. E. Crill (1996) Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons. J Neurophysiol 76:3731–3739

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., W. J. Spain, and W. E. Crill (1989) Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. J Neurophysiol 61:233–44

    PubMed  CAS  Google Scholar 

  • Schwindt, P. C., W. J. Spain, R. C. Foehring, M. C. Chubb, and W. E. Crill (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–67

    PubMed  CAS  Google Scholar 

  • Scroggs, R. S., S. M. Todorovic, E. G. Anderson, and A. P. Fox (1994) Variation in IH, IIR, and ILEAK between acutely isolated adult rat dorsal root ganglion neurons of different size. J Neurophysiol 71:271–279

    PubMed  CAS  Google Scholar 

  • Shapovalov, A. I. (1972) Extrapyramidal monosynaptic and disynaptic control of mammalian alpha-motoneurons. Brain Res 40:105–115

    PubMed  CAS  Google Scholar 

  • Shinoda, Y., T. Ohgaki, T. Futami, and Y. Sugiuchi (1988a) Structural basis for three-dimensional coding in the vestibulospinal reflex. Ann New York Acad Science 545:216–227

    CAS  Google Scholar 

  • Shinoda, Y., T. Ohgaki, T. Futami, and Y. Sugiuchi (1988b) Vestibular projections to the spinal cord: the morphology of single vestibulospinal axons. Prog Brain Res 76:17–27

    PubMed  CAS  Google Scholar 

  • Skydsgaard, M., and J. Hounsgaard (1994) Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro. J Physiol (Lond) 479:233–246

    CAS  Google Scholar 

  • Skydsgaard, M., and J. Hounsgaard (1996) Multiple actions of iontophoretically applied serotonin on motorneurones in the turtle spinal cord in vitro. Acta Physiol Scand 158:301–310

    PubMed  CAS  Google Scholar 

  • Spencer, A. N., J. Przysiezniak, J. Acosta-Urquidi, and T. A. Basarsky (1989) Presynaptic spike broadening reduces junctional potential amplitude. Nature 340:636–8

    PubMed  CAS  Google Scholar 

  • Spielmann, J. M., Y. Laouris, M. A. Nordstrom, G. A. Robinson, R. M. Reinking, and D. G. Stuart (1993) Adaptation of cat motoneurons to sustained and intermittent extracellular activation. J Physiol (Lond) 464

    Google Scholar 

  • Spruston, N., and D. Johnston (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67:508–529

    PubMed  CAS  Google Scholar 

  • Staley, K. J., T. S. Otis, and I. Mody (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346–58

    PubMed  CAS  Google Scholar 

  • Stauffer, E. K., D. G. Watt, A. Taylor, R. M. Reinking, and D. G. Stuart (1976) Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. J Neurophysiol 39:1393–1402

    PubMed  CAS  Google Scholar 

  • Stefani, E., and A. B. Steinbach (1969) Resting potential and electrical properties of frog slow muscle fibers. Effect of different external solutions. J Physiol (Lond) 203:383–401

    CAS  Google Scholar 

  • Stein, R. B., and R. Bertoldi (1981) The size principle: a synthesis of neurophysiological data. In: J.E. Desmedt (ed). Progress in Clinical Neurophysiology Basel: Karger, pp 85–96

    Google Scholar 

  • Storm, J. F. (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–87

    PubMed  CAS  Google Scholar 

  • Streit, J., and H.-R. Luscher (1992) Miniature excitatory postsynaptic potentials in embryonic motoneurons grown in slice cultures of spinal cord, dorsal root ganglia and skeletal muscle. Exp Brain Res 89:453–458

    PubMed  CAS  Google Scholar 

  • Stuart, G., and N. Spruston (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501–3510

    PubMed  CAS  Google Scholar 

  • Svirskis, G., A. Gutman, and J. Hounsgaard (1997) Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. J Neurophysiol 77:579–586

    PubMed  CAS  Google Scholar 

  • Svirskis, G., and J. Hounsgaard (1997) Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. J Neurophysiol 78:1740–1742

    PubMed  CAS  Google Scholar 

  • Svirskis, G., and J. Hounsgaard (1998) Transmitter regulation of plateau properties in turtle motoneurons. J Neurophysiol 79:45–50

    PubMed  CAS  Google Scholar 

  • Takahashi, T. (1990) Membrane currents in visually identified motoneurones of neonatal rat spinal cord. J Physiol (Lond) 423:27–46

    CAS  Google Scholar 

  • Talbot, M. J., and R. J. Sayer (1996) Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. J Neurophysiol 76:2120–2124

    PubMed  CAS  Google Scholar 

  • Talley, E. M., N. N. Sadr, and D. A. Bayliss (1997) Postnatal development of serotonergic innervation, 5-HT1A receptor expression, and 5-HT responses in rat motoneurons. J Neurosci 17:4473–85

    PubMed  CAS  Google Scholar 

  • Tanji, J., and M. Kato (1973) Firing rate of individual motor units in voluntary contraction of abductor digiti minimi muscle in man. Exp Neurol 40:771–783

    PubMed  CAS  Google Scholar 

  • Thurbon, D., H. R. Luscher, T. Hofstetter, and S. J. Redman (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. J Neurophysiol 79:2485–2502

    PubMed  CAS  Google Scholar 

  • Traub, R. D. (1977) Motoneurons of different geometry and the size principle. Biol Cybern 25:163–176

    PubMed  CAS  Google Scholar 

  • Traub, R. D., and R. Llinas (1977) The spatial distribution of ionic conductances in normal and axotomized motorneurons. Neuroscience 2:829–849

    Google Scholar 

  • Trueblood, P. R., M. S. Levine, and S. H. Chandler (1996) Dual-component excitatory amino acid-mediated responses in trigeminal motoneurons and their modulation by serotonin in vitro. J Neurophysiol 76:2461–73

    PubMed  CAS  Google Scholar 

  • Turker, K. S., and R. K. Powers (1999) Effects of large excitatory and inhibitory inputs on motoneuron discharge rate and probability. J Neurophysiology 82:829–840

    CAS  Google Scholar 

  • Turman, J. E., Jr., J. Ajdari, and S. H. Chandler (1999) NMDA receptor NR1 and NR2A/B subunit expression in trigeminal neurons during early postnatal development. J Comp Neurol 409:237–49

    PubMed  CAS  Google Scholar 

  • Ulfhake, B., and S. Cullheim (1988) Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle. J Comp Neurol 278:103–20

    PubMed  CAS  Google Scholar 

  • Ulfhake, B., and J. O. Kellerth (1981) A quantitative light microscopic study of the dendrites of cat spinal alpha-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 202:571–83

    PubMed  CAS  Google Scholar 

  • Ulfhake, B., and J. O. Kellerth (1984) Electrophysiological and morphological measurements in cat gastrocnemius and soleus alpha-motoneurones. Brain Res 307:167–79

    PubMed  CAS  Google Scholar 

  • Ulrich, D., R. Quadroni, and H. R. Luscher (1994) Electrotonic structure of motoneurons in spinal cord slice cultures: A comparison of compartmental and equivalent cylinder models. J Neurophysiol 72:861–871

    PubMed  CAS  Google Scholar 

  • Umemiya, M., and A. J. Berger (1994) Properties and function of low-and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J Neurosci 14:5652–5660

    PubMed  CAS  Google Scholar 

  • Urban, N. N., and G. Barrionuevo (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci USA 95:11450–5

    PubMed  CAS  Google Scholar 

  • Vallbo, A. B. (1964) Accommodation related to the inactivation of the sodium permeability in single myelinated nerve fibres from Xenopus laevis. Acta Physiol Scand 61:429–444

    PubMed  CAS  Google Scholar 

  • Viana, F., D. A. Bayliss, and A. J. Berger (1993a) Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. J Neurophysiol 69:2137–49

    PubMed  CAS  Google Scholar 

  • Viana, F., D. A. Bayliss, and A. J. Berger (1993b) Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. J Neurophysiol 69:2150–63

    PubMed  CAS  Google Scholar 

  • Wallen, P., J. T. Buchanan, S. Grillner, R. H. Hill, J. Christenson, and T. Hokfelt (1989) Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol 61:759–68

    PubMed  CAS  Google Scholar 

  • Wallen, P., O. Ekeberg, A. Lansner, L. Brodin, H. Traven, and S. Grillner (1992) A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. J Neurophysiol 68:1939–50

    PubMed  CAS  Google Scholar 

  • Wallen, P., and S. Grillner (1987) N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J Neurosci 7:2745–55

    PubMed  CAS  Google Scholar 

  • Walton, K., and B. P. Fulton (1986) Ionic mechanisms underlying the firing properties of rat neonatal motoneurons studied in vitro. Neuroscience 19:669–83

    PubMed  CAS  Google Scholar 

  • Wessel, R., W. B. Kristan, Jr., and D. Kleinfeld (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier” K(+) current. J Neurosci 19:5875–88

    PubMed  CAS  Google Scholar 

  • Westcott, S. L. (1993) Comparison of vestibulospinal synaptic input and Ia afferent synaptic input in cat triceps surae motoneurons. PhD, University of Washington.

    Google Scholar 

  • Westcott, S. L., R. K. Powers, F. R. Robinson, and M. D. Binder (1995) Distribution of vestibulospinal input to cat triceps surae motoneurons. Exp Brain Res 107:1–8

    PubMed  CAS  Google Scholar 

  • White, S. R., and S. J. Fung (1989) Serotonin depolarizes cat spinal motoneurons in situ and decreases motoneuron afterhyperpolarizing potentials. Brain Res 502:205–13

    PubMed  CAS  Google Scholar 

  • White, S. R., S. J. Fung, D. A. Jackson, and K. M. Imel (1996) Serotonin, norepinephrine and associated neuropeptides: effects on somatic motoneuron excitability. Progr Brain Res 107:183–199

    CAS  Google Scholar 

  • Woodbury, J. W., and H. D. Patton (1952) Electrical activity of single spinal cord elements. Cold Spring Harbor Symp Quant Biol 17:185–188

    PubMed  CAS  Google Scholar 

  • Wu, S. Y., M. Y. Wang, and N. J. Dun (1991) Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro. Brain Res 554:111–21

    PubMed  CAS  Google Scholar 

  • Zengel, J. E., S. A. Reid, G. W. Sypert, and J. B. Munson (1985) Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the rat. J Neurophysiol 53:1323–44

    PubMed  CAS  Google Scholar 

  • Zhang, L., and K. Krnjevi'c (1986) Effects of 4-aminopyridine on the action potential and the after-hyperpolarization of cat spinal motoneurons. Can J Physiol Pharmacol 64:1402–1406

    PubMed  CAS  Google Scholar 

  • Zhang, L., and K. Krnjevi'c (1988) Intracellular injection of Ca2+ chelator does not affect spike repolarization of cat spinal motoneurons. Brain Res 462:174–80

    PubMed  CAS  Google Scholar 

  • Zieglgansberger, W., and J. Champagnat (1979) Cat spinal motoneurones exhibit topographic sensitivity to glutamate and glycine. Brain Res 160:95–104

    PubMed  CAS  Google Scholar 

  • Ziskind-Conhaim, L. (1990) NMDA receptors mediate poly-and monosynaptic potentials in motoneurons of rat embryos. J Neurosci 10:125–35

    PubMed  CAS  Google Scholar 

  • Ziskind-Conhaim, L., B. S. Seebach, and B. X. Gao (1993) Changes in serotonin-induced potentials during spinal cord development. J Neurophysiol 69:1338–49

    PubMed  CAS  Google Scholar 

  • Zwaagstra, B., and D. Kernell (1980a) The duration of after-hyperpolarization in hindlimb alpha motoneurones of different sizes in the cat. Neurosci Lett 19:303–7

    PubMed  CAS  Google Scholar 

  • Zwaagstra, B., and D. Kernell (1980b) Sizes of soma and stem dendrites in intracellularly labelled alpha-motoneurones of the cat, Brain Res 204:295–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this chapter

Cite this chapter

Powers, R.K., Binder, M.D. (2001). Input-output functions of mammalian motoneurons. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0115594

Download citation

  • DOI: https://doi.org/10.1007/BFb0115594

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41474-2

  • Online ISBN: 978-3-540-44510-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics