Skip to main content

Visual homing: Surfing on the epipoles

  • Conference paper
  • First Online:
The confluence of vision and control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 237))

  • 72 Accesses

Abstract

We introduce a novel method for visual homing. Using this method a robot can be sent to desired positions and orientations in 3-D space specified by single images taken from these positions. Our method determines the path of the robot on-line. The starting position of the robot is not constrained, and a 3-D model of the environment is not required. The method is based on recovering the epipolar geometry relating the current image taken by the robot and the target image. Using the epipolar geometry, most of the parameters which specify the differences in position and orientation of the camera between the two images are recovered. However, since not all of the parameters can be recovered from two images, we have developed specific methods to bypass these missing parameters and resolve the ambiguities that exist. We present two homing algorithms for two standard projection models, weak and full perspective. We have performed simulations and real experiments which demonstrate the robustness of the method and that the algorithms always converge to the target pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Basri, E. Rivlin, and I. Shimshoni, Visual homing: surfing on the epipoles Department of Computer Science Technical Report CIS9709, The Technion.

    Google Scholar 

  2. R. Basri, E. Rivlin, and I. Shimshoni, Visual homing: surfing on the epipoles ICCV-98, Forthcoming.

    Google Scholar 

  3. R. Basri and E. Rivlin, Localization and homing using combinations of model views. AI 78:327–354, 1995.

    Google Scholar 

  4. G. Dudek and C. Zhang, Vision-based robot localization witout explicit object models. IEEE Int. Conf. on Robotics and Automation: 76–82, 1996.

    Google Scholar 

  5. R. Hartley. In defense of the 8-point algorithm. ICCV-95:1064–1070, 1995.

    Google Scholar 

  6. J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman. Image-based homing. IEEE Control Systems:38–44, 1992.

    Google Scholar 

  7. T. S. Huang and C. H. Lee, Motion and Structure from Orthographic Projections. PAMI, 2(5):536–540, 1989.

    Google Scholar 

  8. L. L. Kontsevich, Pairwise comparison technique: a simple solution for depth reconstruction. Journal of Optical Society, 10(6):1129–1135, 1993.

    Article  Google Scholar 

  9. E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. Ila., 122:1939–1948, 1913.

    MATH  Google Scholar 

  10. C. H. Lee and T. S. Huang, Finding point correspondences and determining motion of a rigid object from two weak perspective views. CVGIP, 52:309–327, 1990.

    Google Scholar 

  11. H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections. Nature, 293:133–135, 1981.

    Article  Google Scholar 

  12. Y. Matsumoto, I. Masayuki and H. Inoue, Visual navigation using view-sequenced route representation. IEEE Int. Conf. on Robotics and Automation:83–88, 1996.

    Google Scholar 

  13. R. N. Nelson. Visual homing using an associative memory. DARPA Image Understanding Workshop:245–262, 1989.

    Google Scholar 

  14. L.S. Shapiro, A. Zisserman, and M. Brady. 3d motion recovery via affine epipolar geometry. IJCV, 16(2):147–182, October 1995.

    Article  Google Scholar 

  15. R. Y. Tsai and T. S. Huang, Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. PAMI, 6(1):13–27, 1984.

    Google Scholar 

  16. S. Ullman. The interpretation of visual motion. M.I.T. Press, Cambridge, MA, 1979.

    Google Scholar 

  17. J. Weng, T.S. Huang, and N. Ahuja. Motion and structure from two perspective views: Algorithms, error analysis, and error estimation. PAMI, 11(5):451–476, 1989.

    Google Scholar 

  18. J. Y. Zheng and S. Tsuji. Panoramic representation for route recognition by a mobile robot. IJCV, 9(1):55–76, 1992.

    Article  Google Scholar 

  19. D. Zipser. Biologically plausible models of place recognition and goal location. In D. E. Rumelhart et al., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 2, MIT Press:432–471, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David J. Kriegman PhD Gregory D. Hager PhD A. Stephen Morse PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Basri, R., Rivlin, E., Shimshoni, I. (1998). Visual homing: Surfing on the epipoles. In: Kriegman, D.J., Hager, G.D., Morse, A.S. (eds) The confluence of vision and control. Lecture Notes in Control and Information Sciences, vol 237. Springer, London. https://doi.org/10.1007/BFb0109660

Download citation

  • DOI: https://doi.org/10.1007/BFb0109660

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-025-5

  • Online ISBN: 978-1-84628-528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics