Skip to main content

Biosynthesis of storage lipids in plant cell and embryo cultures

  • Chapter
  • First Online:
Enzymes and Products from Bacteria Fungi and Plant Cells

Abstract

The biosynthesis of storage lipids in plant cell and embryo cultures is discussed in the light of their significance in the breeding of agriculturally important oil seed crops. After a short introduction to the biosynthesis of storage lipids, i.e. triacylglycerols and wax esters, this review covers the occurrence and biosynthesis of storage lipids in plant cell and embryo cultures. Plant cells in culture generally contain low levels of both unusual fatty acids and triacylglycerols indicating that these cells are quite different from cells of oil storage tissues. There are a few exceptions to this rule which demonstrate that induction of genes involved in the expression of fatty acid modification and triacylglycerol assembly is possible in plant cell cultures. Such biosynthetically active plant cells may be of particular interest in future studies of storage lipid assembly. Both somatic and gametophytic embryos of oil plants exhibit high capacities for storage lipid biosynthesis and accumulation in vitro compared to cultured plant cells. Above all, the microspore-derived embryo system is recommended to both plant breeders and plant biochemists for the selection and multiplication of plants of superior quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Acyl-CoA:

acyl-Coenzym A, e.g. (Z)-9 18∶1-CoA, oleoyl-Coenzyme A (see above)

AT:

acyltransferase

2-BrOA:

2-bromooctanoic acid

2,4-D:

2,4-dichlorophenoxy acetic acid

DAG:

diacylglycerols

DGDG:

digalactosyl diacylglycerols

DIPFP:

diisopropyl fluorophosphate

DW:

dry weight

EDTA:

ethylenediamine tetraacetic acid

EI-MS:

electron impact-mass spectrometry

FA:

fatty acid

FW:

fresh weight

G-3-P:

glycerol-3-phosphate

HPLC:

high performance liquid chromatography

LPA:

2-lysophosphatidic acids

MD:

microspore-derived

MGDG:

monogalactosyl diacylglycerols

NADH:

nicotinamide adenine dinucleotide (reduced)

NADPH:

nicotinamide adenine dinucleotide phosphate (reduced)

PA:

phosphatidic acids

PC:

phosphatidylcholines

PE:

phosphatidylethanolamines

Pi :

inorganic phosphate

PL:

polar lipids

TAG:

triacylglycerols

TL:

total lipids

Tr:

trace

VLCFA:

very long-chain fatty acids (C≧20)

References

  1. Knauf VC (1987) Trends Biotechnol 5: 40

    Google Scholar 

  2. Eckes P, Donn G, Wengenmayer F (1987) Angew Chem 99: 392

    Google Scholar 

  3. Röbbelen G (1987) In: Applewhite TM (ed) Proceedings world conference on biotechnology for the fats and oils industry. American Oil Chemists' Society, Champaign, IL, p 78

    Google Scholar 

  4. Somerville CR, Browse J (1988) In: Conn EE (ed) Recent advances in phytochemistry, vol 22. Plenum, New York, p 19

    Google Scholar 

  5. Battey JF, Schmid KM, Ohlrogge JB (1989) Trends Biotechnol 7: 122

    Google Scholar 

  6. Stymne S, Stobart AK (1987) In: Stumpf PK, Conn EE (eds-in-chief) The biochemistry of plants, vol 9. Academic, New York, p 175

    Google Scholar 

  7. Gurr MI (1984) In: Stumpf PK, Conn EE (eds-in-chief) The biochemistry of plants, vol 4. Academic, New York, p 205

    Google Scholar 

  8. Ohlrogge JB (1987) In: Applewhite TH (ed) Proceedings world conference on biotechnology for the fats and oil industry. American Oil Chemists' Society, Champaign, IL, p 87

    Google Scholar 

  9. Roughan PG, Slack CR (1982) Annu Rev Plant Physiol 33: 97

    Google Scholar 

  10. Yermanos DM (1975) J Am Oil Chem Soc 52: 115

    Google Scholar 

  11. Kolattukudy PE (1984) In: Stumpf PK, Conn EE (eds-in-chief) The biochemistry of plants, vol 4. Academic, New York, p 571

    Google Scholar 

  12. Radwan SS, Mangold HK (1976) Adv Lipid Res 14: 171

    Google Scholar 

  13. Radwan SS, Mangold HK (1980) In: Fiechter A (ed) Advances in biochemical engineering, vol 16. Springer, Berlin Heidelberg New York, p 109

    Google Scholar 

  14. Kleinig H, Kopp C (1978) Planta 139: 61

    Google Scholar 

  15. Kleinig H, Steinki C, Kopp C, Zaar K (1978) Planta 140: 233

    Google Scholar 

  16. Radwan SS, Grosse-Oetringhaus S, Mangold HK (1978) Chem Phys Lipids 22: 177

    Google Scholar 

  17. Kleinig H, Hara S, Schuchmann R (1982) In: Fujiwara (ed) Plant tissue culture 1982, Maruzon, Tokyo, p 257

    Google Scholar 

  18. Theimer RR, Schöpf UFM (1989) Fat Sci Technol 91: 434

    Google Scholar 

  19. Schöpf UFM, Theimer RR (1980) Biol Chem Hoppe-Seyler 370: 798

    Google Scholar 

  20. Tsai CH, Wen MC, Kinsella JE (1982) J Food Sci 47: 768

    Google Scholar 

  21. Tsai CH, Kinsella JE (1981) Lipids 16: 577

    Google Scholar 

  22. Foster C, End M, Leathers R, Pettipher G, Hadley P, Scragg AH (1988) In: Applewhite TH (ed) Proceedings world conference on biotechnology for the fats and oil industry. American Oil Chemists' Society, Champaign, IL, p 305

    Google Scholar 

  23. Song M, Tattrie N (1973) Can J Bot 51: 1893

    Google Scholar 

  24. Radwan SS (1976) Phytochemistry 15: 1727

    Google Scholar 

  25. Schneiders G (1981) Zusammensetzung und Stoffwechsel von Lipiden in photosynthetisch aktiven Zellsuspensionskulturen, Thesis, University of Münster

    Google Scholar 

  26. Radwan SS (1975) Fette Seifen Anstrichm 77: 181

    Google Scholar 

  27. Wilson AC, Kates M, de la Roche AI 81978) Lipids 13: 504

    Google Scholar 

  28. Martin BA, Horn ME, Widholm JM, Rinne RW (1984) Biochim Biophys Acta 796: 146

    Google Scholar 

  29. Ellenbracht F, Barz W, Mangold HK (1980) Planta 150: 114

    Google Scholar 

  30. Leathers RR, Scragg AH (1989) Plant Sci 62: 217

    Google Scholar 

  31. Scragg AH, Leathers RR (1988) In: Moreton RS (ed) Single cell oil. Longman, Harlow, England, p 71

    Google Scholar 

  32. Gregor HD (1977) Chem Phys Lipids 20: 77

    Google Scholar 

  33. Manoharan K, Prasad R, Guha-Mukherjee S (1990) Phytochemistry 29: 2529

    Google Scholar 

  34. Ohyama K, Uchida Y, Misawa N, Komano T, Fujita M, Ueno T (1984) Plant Cell Rep 3: 21

    Google Scholar 

  35. Mangold HK (1977) In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its bio-technological application. Springer, Berlin Heidelberg, p 55

    Google Scholar 

  36. Halder T, Gadgil VN (1983) Phytochemistry 22: 1965

    Google Scholar 

  37. Ezzat KS, Pearce RS (1980) Phytochemistry 19: 1375

    Google Scholar 

  38. Gemmrich AR (1982) Plant Cell Rep 1: 233

    Google Scholar 

  39. Dutta PC, Appelqvist L-Å (1989) Plant Sci 64: 167

    Google Scholar 

  40. Radwan SS, Spener F, Mangold HK, Staba EJ (1975) Chem Phys Lipids 14: 72

    Google Scholar 

  41. Belay S, Rier JP, Ayorinde FO (1989) J Am Oil Chem Soc 66: 828

    Google Scholar 

  42. Yano I, Nichols BW, Morris LJ, James AT (1972) Lipids 7: 30

    Google Scholar 

  43. Radwan SS, Mangold HK, Spener F (1974) Chem Phys Lipids 13: 103

    Google Scholar 

  44. Radwan SS, Mangold HK, Hüsemann W, Barz W (1979) Chem Phys Lipids 24: 79

    Google Scholar 

  45. Staba EJ, Shik Shin B, Mangold HK (1971) Chem Phys Lipids 6: 291

    Google Scholar 

  46. Tattrie NH, Veliky IA (1973) Can J Bot 51: 513

    Google Scholar 

  47. Spener F, Staba EJ, Mangold HK (1974) Chem Phys Lipids 12: 344

    Google Scholar 

  48. Gemmrich AR, Schraudolf H (1980) Chem Phys Lipids 26: 259

    Google Scholar 

  49. Schuchmann R, Wellmann E (1983) Plant Cell Rep 2: 88

    Google Scholar 

  50. Hara S, Falk H, Kleinig H (1985) Planta 164: 303

    Google Scholar 

  51. Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA, Moloney MM, Wilen RW, Scowcroft WR, Holbrook LA (1990) Planta 181: 18

    Google Scholar 

  52. Falkenau C, Heim S, Wagner KG (1987) Plant Sci 50: 173

    Google Scholar 

  53. Connett RJA, Hanke DE (1987) Planta 170: 161

    Google Scholar 

  54. Ettlinger C, Lehle L (1988) Nature 331: 176

    Google Scholar 

  55. Finkelstein RR, Tenbarge KM, Shumway JE, Crouch M (1985) Plant Physiol 78: 630

    Google Scholar 

  56. Kates M, Wilson AC, de la Roche AJ (1979) In: Appelqvist L-Å, Liljenberg C (eds) Advances in the biochemistry and physiology of plant lipids. Elsevier/North-Holland, Amsterdam, p 329

    Google Scholar 

  57. Tsai CH, Kinsella JE (1982) Lipids 17: 367

    Google Scholar 

  58. Tsai CH, Kinsella JE (1982) Lipids 17: 848

    Google Scholar 

  59. Stumpf PK, Weber N (1977) Lipids 12: 120

    Google Scholar 

  60. Weber N, Richter I, Mangold HK, Mukherjee KD (1979) Planta 145: 479

    Google Scholar 

  61. De Silva NS, Fowler MW (1976) Phytochemistry 15: 1735

    Google Scholar 

  62. Weber N, Mangold HK (1983) Planta 158: 111

    Google Scholar 

  63. Weber N, Benning H (1985) Eur J Biochem 146: 323

    Google Scholar 

  64. Weber N, Mangold HK (1988) In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 5, Academic, New York, p 509

    Google Scholar 

  65. Thies W (1971) Fette Seifen Anstrichm 73: 710

    Google Scholar 

  66. Tisserat B, Esan EB, Murashige T (1979) Hort Rev 1: 1

    Google Scholar 

  67. Janick J (1986) In: Crocomo OJ, Sharp WR, Evans DA, Bravo JE, Tavares FCA, Paddock EF (eds) Biotechnology of plants and microorganisms. Chapter 8, Ohio State University, Columbus, p 97

    Google Scholar 

  68. Fan Z, Armstrong KC, Keller WA (1988) Protoplasma 147: 191

    Google Scholar 

  69. Maheshwari P, Sachar RC (1963) In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. International Society of Plant Morphologists, University of Dehli, Dehli, India, p 265

    Google Scholar 

  70. Yang HY, Zou C (1982) Theor Appl Genet 63: 87

    Google Scholar 

  71. Avjioglu A, Knox RB (1989) Ann Bot 63: 409

    Google Scholar 

  72. Norton G, Harris JF (1975) Planta 123: 163

    Google Scholar 

  73. Norton G, Harris JF (1983) Phytochemistry 22: 2703

    Google Scholar 

  74. Zhang D, Zhengua C, Lihua Z, Wenbin L (1988) Acta Gent Sinica 15: 254

    Google Scholar 

  75. Janick J, Simon JE, Quinn J, Beaubaire N (1989) In: Craker LE, Simon JE (eds) Herbs, spices and medicinal plants: Recent advances in botany, Horticulture, vol 4, Oryx, Phoenix, p 145

    Google Scholar 

  76. Whipkey A, Simon JE, Janick J (1988) J Am Oil Chem Soc 65: 979

    Google Scholar 

  77. Quinn J, Whipkey A, Simon J, Janick J (1987) Acta Hort 208: 243

    Google Scholar 

  78. Pence VC, Hasegawa PM, Janick J (1981) J Am Soc Hort Sci 106: 381

    Google Scholar 

  79. Pence VC, Hasegawa PM, Janick J (1981) Physiol Plant 53: 378

    Google Scholar 

  80. Pence VC, Hasegawa PM, Janick J (1980) Z. Pflanzenphysiol. 98: 1

    Google Scholar 

  81. Janick J, Wright DC, Hasegawa PM (1982) J Am Soc Hort Sci 107: 919

    Google Scholar 

  82. Kononowicz AK, Janick J (1984) J Am Soc Hort Sci 109: 266

    Google Scholar 

  83. Wright DC, Kononowicz AK, Janick J (1984) J Am Soc Hort Sci 109: 77

    Google Scholar 

  84. Wright DC, Janick J, Hasegawa PM (1984) Lipids 18: 863

    Google Scholar 

  85. Miwa TK (1971) J Am Oil Chem Soc 48: 259

    Google Scholar 

  86. Wang Y-C, Janick J (1986) J Am Soc Hort Sci 111: 797

    Google Scholar 

  87. Cherry JH, Bishop L, Leopold N, Pikaard C, Hasegawa PM (1984) Phytochemistry 23: 2183

    Google Scholar 

  88. Shoemaker RC, Hammond EG (1988) In Vitro Cell Develop Biol 24: 829

    Google Scholar 

  89. Rabechault H, Martin JP, Cas S (1972) Oleagineux 27: 318

    Google Scholar 

  90. Jones LH (1974) In: Spencer B (ed) Industrial aspects of biochemistry, Elsevier/North-Holland, Amsterdam, p 813

    Google Scholar 

  91. Rabechault H, Martin JP (1976) CR Hebd Seances Acad Sci Paris 283: 1735

    Google Scholar 

  92. Jones LH, Hughes WA (1988) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5: Trees II. Springer, Berlin, p 176

    Google Scholar 

  93. Jones LH (1989) Biotechnol Genet Eng Rev 7: 281

    Google Scholar 

  94. Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Ann Bot 59: 43

    Google Scholar 

  95. Jones LH (1984) J Am Oil Chem Soc 61: 1717

    Google Scholar 

  96. Kudielka RA, Theimer RR (1983) Plant Sci Lett 31: 237

    Google Scholar 

  97. Kudielka RA, Theimer RR (1983) In: Proceedings workshop space biology. ESA SP-206: 63 (from: Theimer RR, Kudielka RA, Rösch I (1986) Naturwissenschaften 73: 442)

    Google Scholar 

  98. Kleiman R, Spencer GF (1982) J Am Oil Chem Soc 59: 29

    Google Scholar 

  99. Matsuzaki T, Iwai S, Koiwai A (1988) Agric Biol Chem 52: 1283

    Google Scholar 

  100. Thomas E, Wenzel G (1975) Z Pflanzenzücht 74: 77

    Google Scholar 

  101. Keller WA, Armstrong KC (1977) Can J Bot 55: 1383

    Google Scholar 

  102. Wenzel G, Hoffmann F, Thomas E (1977) Z Pflanzenzücht 78: 149

    Google Scholar 

  103. de la Roche AI, Keller WA (1977) Z Pflanzenzücht 78: 319

    Google Scholar 

  104. Lichter R (1982) Z Pflanzenzücht 105: 427

    Google Scholar 

  105. Chuong PV, Beversdorf WD (1985) Plant Sci 39: 219

    Google Scholar 

  106. Keller WA, Armstrong KC, de la Roche IA (1982) In: Giles KL, Sen SK (eds) Plant cell culture in crop improvement. Plenum, New York, p 169

    Google Scholar 

  107. Polsoni L, Kott LS, Beversdorf WD (1988) Can J Bot 66: 1681

    Google Scholar 

  108. Taylor DC, Weber N, Barton DL, Underhill EW, Hogge LR, Weselake RJ, Pomeroy MK (1991) Plant Physiol 97: 65

    Google Scholar 

  109. Turnham E, Northcote DH (1984) Phytochemistry 23: 35

    Google Scholar 

  110. Turnham E, Northcote DH (1982) Biochem J 208: 323

    Google Scholar 

  111. Sambanthamurthi R, Oo K-C, Ong ASH (1987) Plant Sci 51: 97

    Google Scholar 

  112. Roughan PG, Slack CR (1982) Annu Rev Plant Physiol 33: 97

    Google Scholar 

  113. Mukherjee KD (1986) Planta 167: 279

    Google Scholar 

  114. Sun C, Cao Y-Z, Huang AHC (1988) Plant Physiol 88: 56

    Google Scholar 

  115. Battey JF, Ohlrogge JB (1989) Plant Physiol 90: 835

    Google Scholar 

  116. Fehling E, Mukherjee KD (1990) Phytochemistry 29: 1525

    Google Scholar 

  117. Agrawal VP, Stumpf PK (1985) Lipids 20: 361

    Google Scholar 

  118. Taylor DC, Weber N, Barton D, Underhill E, Pomeroy K (1990) In: Quinn PJ, Harwood JL (eds) Plant lipid biochemistry, structure and utilization. The Biochemical Society, Portland, London, p 210

    Google Scholar 

  119. Cao Y-Z, Oo K-C, Huang AHC (1990) Plant Physiol 94: 1199

    Google Scholar 

  120. Murphy DJ, Mukherjee KD, Latzko E (1983) Biochem J 213: 249

    Google Scholar 

  121. Taylor DC, Weber N, Hogge LR, Underhill EW, Pomeroy MK, (1992) J Am Oil Chem Soc (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Weber, N., Taylor, D.C., Underhill, E.W. (1992). Biosynthesis of storage lipids in plant cell and embryo cultures. In: Enzymes and Products from Bacteria Fungi and Plant Cells. Advances in Biochemical Engineering/Biotechnology, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008757

Download citation

  • DOI: https://doi.org/10.1007/BFb0008757

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55106-5

  • Online ISBN: 978-3-540-46725-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics