Skip to main content
Log in

Definition, classification and mechanism of action of endocrine disrupting chemicals

  • Mini Review
  • Published:
Hormones Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al, 2009 Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30: 293–342.

    Article  CAS  Google Scholar 

  2. Bolton JL, Thatcher GR, 2008 Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 21: 93–101.

    Article  Google Scholar 

  3. Jirtle RL, Skinner MK, 2007 Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253–262.

    Article  CAS  Google Scholar 

  4. Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J, 2008 Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 196: 101–112.

    Article  CAS  Google Scholar 

  5. Anway MD, Skinner MK, 2008 Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 16: 23–25.

    Article  Google Scholar 

  6. Beischlag T V, Luis Morales J, Hollingshead BD, Perdew GH, 2008 The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18: 207–250.

    Article  CAS  Google Scholar 

  7. Swedenborg E, Pongratz I, 2009 AhR and ARNT modulate ER signaling. Toxicology [Epub ahead of print]

    Google Scholar 

  8. Dickerson SM, Gore AC, 2007 Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord 8: 143–159.

    Article  CAS  Google Scholar 

  9. Panzica GC, Mura E, Miceli D, Martini MA, Gotti S, Viglietti-Panzica C, 2009 Effects of xenoestrogens on the differentiation of behaviorally relevant neural circuits in higher vertebrates. Ann N Y Acad Sci 1163: 271–278.

    Article  CAS  Google Scholar 

  10. Kloas W, Urbatzka R, Opitz R, et al, 2009 Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163: 187–200.

    Article  CAS  Google Scholar 

  11. Bjorkblom C, Hogfors E, Salste L, et al, 2009 Estrogenic and androgenic effects of municipal wastewater effluent on reproductive endpoint biomarkers in three-spined stickleback (Gasterosteus aculeatus). Environ Toxicol Chem 28: 1063–1071.

    Article  CAS  Google Scholar 

  12. Johnson A, Tanaka H, Okayasu Y, Suzuki Y, 2007 Estrogen content and relative performance of Japanese and British sewage treatment plants and their potential impact on endocrine disruption. Environ Sci 14: 319–329.

    CAS  PubMed  Google Scholar 

  13. Lee YM, Oleszkiewicz JA, Cicek N, Londry K, 2004 Endocrine disrupting compounds (EDC) in municipal wastewater treatment: a need for mass balance. Environ Technol 25: 635–645.

    Article  CAS  Google Scholar 

  14. Guillette LJ Jr, Edwards TM, Moore BC, 2007 Alligators, contaminants and steroid hormones. Environ Sci 14: 331–347.

    CAS  PubMed  Google Scholar 

  15. Crain DA, Janssen SJ, Edwards TM, et al, 2008 Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90: 911–940.

    Article  CAS  Google Scholar 

  16. vom Saal FS, Hughes C, 2005 An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113: 926–933.

    Article  Google Scholar 

  17. Sekizawa J, 2008 Low-dose effects of bisphenol A: a serious threat to human health? J Toxicol Sci 33: 389–403.

    Article  CAS  Google Scholar 

  18. Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, Lamartiniere CA, 2009 Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environ Health Perspect 117: 910–915.

    Article  CAS  Google Scholar 

  19. Moral R, Wang R, Russo IH, Mailo DA, Lamartiniere CA, Russo J, 2007 The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure. BMC Genomics 8: 453.

    Article  Google Scholar 

  20. Schlumpf M, Jarry H, Wuttke W, Ma R, Lichtensteiger W, 2004 Estrogenic activity and estrogen receptor beta binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor. Toxicology 199: 109–120.

    Article  CAS  Google Scholar 

  21. Schlumpf M, Schmid P, Durrer S, et al, 2004 Endocrine activity and developmental toxicity of cosmetic UV filters-an update. Toxicology 205: 113–122.

    Article  CAS  Google Scholar 

  22. Schlecht C, Klammer H, Wuttke W, Jarry H, 2006 A dose-response study on the estrogenic activity of benzophenone-2 on various endpoints in the serum, pituitary and uterus of female rats. Arch Toxicol 80: 656–661.

    Article  CAS  Google Scholar 

  23. Schlecht C, Klammer H, Frauendorf H, Wuttke W, Jarry H, 2008 Pharmacokinetics and metabolism of benzophenone 2 in the rat. Toxicology 245: 11–17.

    Article  CAS  Google Scholar 

  24. Klammer H, Schlecht C, Wuttke W, et al, 2007 Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats. Toxicology 238: 192–199.

    Article  CAS  Google Scholar 

  25. Cassidy A, Albertazzi P, Lise Nielsen I, et al, 2006 Critical review of health effects of soyabean phyto-oestrogens in post-menopausal women. Proc Nutr Soc 65: 76–92.

    Article  CAS  Google Scholar 

  26. Cao Y, Calafat AM, Doerge DR, et al, 2009 Isoflavones in urine, saliva, and blood of infants: data from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol 19: 223–234.

    Article  CAS  Google Scholar 

  27. Delclos KB, Weis CC, Bucci TJ, et al, 2009 Overlapping but distinct effects of genistein and ethinyl estradiol (EE(2)) in female Sprague-Dawley rats in multigenerational reproductive and chronic toxicity studies. Reprod Toxicol 27: 117–132.

    Article  CAS  Google Scholar 

  28. Mueller SO, Simon S, Chae K, Metzler M, Korach KS, 2004 Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci 80: 14–25.

    Article  CAS  Google Scholar 

  29. Jefferson WN, Padilla-Banks E, Newbold RR, 2005 Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol Reprod 73: 798–806.

    Article  CAS  Google Scholar 

  30. Kouki T, Kishitake M, Okamoto M, Oosuka I, Takebe M, Yamanouchi K, 2003 Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm Behav 44: 140–145.

    Article  CAS  Google Scholar 

  31. Barjesteh van Waalwijk van Doorn-Khosrovani S, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ, 2007 Dietary flavonoids induce MLL translocations in primary human CD34+ cells. Carcinogenesis 28: 1703–1709.

    Article  Google Scholar 

  32. Jefferson WN, Padilla-Banks E, Goulding EH, Lao SP, Newbold RR, Williams CJ, 2009 Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol Reprod 80: 425–431.

    Article  CAS  Google Scholar 

  33. Lethaby AE, Brown J, Marjoribanks J, Kronenberg F, Roberts H, Eden J, 2007 Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev: CD001395.

    Google Scholar 

  34. Wuttke W, Jarry H, Seidlova-Wuttke D, 2007 Isoflavones-safe food additives or dangerous drugs? Ageing Res Rev 6: 150–188.

    Article  CAS  Google Scholar 

  35. Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC, 2004 Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo — controlled study. Fertil Steril 82: 145–148, quiz 265.

    Article  CAS  Google Scholar 

  36. Lamartiniere CA, 2002 Timing of exposure and mammary cancer risk. J Mammary Gland Biol Neoplasia 7: 67–76.

    Article  Google Scholar 

  37. Ziegler RG, Hoover RN, Pike MC, et al, 1993 Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85: 1819–1827.

    Article  CAS  Google Scholar 

  38. Shu XO, Jin F, Dai Q, et al, 2001 Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10: 483–488.

    CAS  PubMed  Google Scholar 

  39. Adewale HB, Jefferson WN, Newbold RR, Patisaul HB, 2009 Neonatal bisphenol-a exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol Reprod 81: 690–699.

    Article  CAS  Google Scholar 

  40. Newbold RR, Jefferson WN, Padilla-Banks E, 2009 Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 117: 879–885.

    Article  CAS  Google Scholar 

  41. Schmutzler C, Bacinski A, Gotthardt I, et al, 2007 The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase. Endocrinology 148: 2835–2844.

    Article  CAS  Google Scholar 

  42. Schlecht C, Klammer H, Jarry H, Wuttke W, 2004 Effects of estradiol, benzophenone-2 and benzophenone-3 on the expression pattern of the estrogen receptors (ER) alpha and beta, the estrogen receptor-related receptor 1 (ERR1) and the aryl hydrocarbon receptor (AhR) in adult ovariectomized rats. Toxicology 205: 123–130.

    Article  CAS  Google Scholar 

  43. Vanden Bossche H, Marichal P, Gorrens J, Coene MC, 1990 Biochemical basis for the activity and selectivity of oral antifungal drugs. Br J Clin Pract Suppl 71: 41–46.

    Google Scholar 

  44. Moreira VM, Salvador JA, Vasaitis TS, Njar VC, 2008 CYP17 inhibitors for prostate cancer treatment-an update. 15: 868–899.

    CAS  Google Scholar 

  45. Doerge DR, Chang HC, 2002 Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 777: 269–279.

    Article  CAS  Google Scholar 

  46. Harris RM, Wood DM, Bottomley L, et al, 2004 Phytoestrogens are potent inhibitors of estrogen sulfation: implications for breast cancer risk and treatment. J Clin Endocrinol Metab 89: 1779–1787.

    Article  CAS  Google Scholar 

  47. Reinen J, Vriese E, Glatt H, Vermeulen NP, 2006 Development and validation of a fluorescence HPLC-based screening assay for inhibition of human estrogen sulfotransferase. Anal Biochem 357: 85–92.

    Article  CAS  Google Scholar 

  48. Radovic B, Mentrup B, Kohrle J, 2006 Genistein and other soya isoflavones are potent ligands for transthyretin in serum and cerebrospinal fluid. Br J Nutr 95: 1171–1176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wuttke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuttke, W., Jarry, H. & Seidlova-Wuttke, D. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones 9, 9–15 (2010). https://doi.org/10.1007/BF03401276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401276

Key words

Navigation