Skip to main content
Log in

Particle Size Distribution for Refractory Castables: A Review

  • Refractories
  • Published:
Interceram - International Ceramic Review

Abstract

Particle size distribution is important for the development of both shaped and unshaped refractories. But it is more critical for the castables as they need to satisfy two near contradictory properties, flow and compaction (strength). Continuous particle size distribution of ordered particle sizing systems is employed primarily in advanced castables due to the many advantage such as reducing the water demand, imparting desired rheological characteristics (such as vibratory/thixotropic flow or free flow/self-leveling behavior), minimizing porosity, and maximizing particle contact for enhanced bonding and optimum strength development. Casting and placing properties of castables, which are dependent on flow behavior, are the most critical ones as they affect refractory property development in castables. Many researchers have worked on particle size distribution for castables. Primarily the works of Furnas, Andreasen and Dinger & Funk are well accepted in the castable industries mainly because of their simple approach. This paper reviews these distribution models for castables and their suitability in practical castable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Homeny, J., Bradt, R.C.: Aggregate distribution effects on the mechanical properties and thermal shock behavior of model monolithic refractory systems. In: Fisher R, ed. Advances in Ceramics Vol. 13. Columbus, OH: The American Ceramic Society, (1985) 110–130

    Google Scholar 

  2. Furnas, C.C.: Grading Aggregates. Industrial and Engineering Chemistry 23 (1931) [7] 1052–1058

    Article  CAS  Google Scholar 

  3. MacZura, G., Gnauck, V., Rothenbuehler, P.: In: Preprint of the First International Conference on Refractories. The Tech. Asso. of Refrac. (1983). 560–575

  4. Mandelbrot, B.B.: A fractal set is one for which the fractal dimension strictly exceeds the topological dimension. In Fractals and Chaos. Springer, Berlin (2004) 38

    Chapter  Google Scholar 

  5. Gouyet, J.F.: Physics and fractal structures. Masson Springer. Paris/New York (1996)

    Google Scholar 

  6. Andreasen, A.H.M.: Zur Kenntnis des Mahlgutes. Kolloidchemische Beihefte 27 (1928) [6–12] 349–458

    Article  CAS  Google Scholar 

  7. Andreasen, A.H.M.: Über die Gültigkeit des Stokes’schen Gesetzes für nicht kugelförmige Teilchen. Kolloid-Zeitschrift 48 (1929) [2] 175–179

    Article  CAS  Google Scholar 

  8. Andreasen, A.H.M.: Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten). Kolloid-Zeitschrift 50 (1930) [3] 217–228

    Article  CAS  Google Scholar 

  9. Myhre, B., Hundere, A.M.: The use of particle size distribution in the development of refractory castable, XXV ALAFAR Congress, Argentina (1996)

  10. Dinger, R., Funk, J.E.: Particle packing II — Review of packing of polydisperse particle systems. Interceram 41 (1982) [2] 95–97

    Google Scholar 

  11. Dinger, R., Funk, J.E.: Particle packing I — Fundamental of particle packing monodisperse spheres. Interceram 41 (1992) [2] 10–14

    Google Scholar 

  12. Dinger, R., Funk, J.E.: Particle packing II — Review of packing of polydisperse particle systems. Interceram 41 (1992) [2] 95–97

    Google Scholar 

  13. Dinger, D.R., Funk, J.E.: Particle packing III — Discrete vs continuous particle sizes. Interceram 41 (1992) [5] 332–335

    Google Scholar 

  14. Dinger, D.R., Funk, J.E.: Particle packing IV — Computer modeling of particle packing phenomena. Interceram 42 (1993) [3] 150–152

    Google Scholar 

  15. Dinger, D.R.: Ceramic Processing E-Zine. 1 (2003) [9] (http://www.dingerceramics.com/CeramicProcessingE-zine/CPEBackIssues/Vol1Num9.htm)

  16. Myhre, B., Sunde, K.: Alumina based castables with very low content of hydraulic compound, Part 1: The effect of binder and PSD on flow and set. UNITECR 1995, Kyoto, Japan

  17. Sarkar, R., Parija, A.: Effect of alumina fines on vibratable high alumina low cement castable. Interceram 63 (2014) [3] 113–116

    CAS  Google Scholar 

  18. Sarkar, R., Parija, A.: Effect of Alumina Fines on High Alumina Self-flow Low Cement Castables. Refractories World Forum 6 (2014) [1] 73–77

    Google Scholar 

  19. Sarkar, R., Parija, A.: Low cement high alumina castable: Effect of distribution co-efficient. International Conference on Advances in Refractories and Clean Steel Making, June 26–28, 2013, RDCIS, Ranchi, India

  20. Sarkar, R.: Particle size distribution and distribution coefficient of castables. Invited talk, National Seminar on Advances in Refractory Raw Materials and Monolithics (ARMM 2013), November 12–13, (2013), Kolkata, India.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R. Particle Size Distribution for Refractory Castables: A Review. Interceram. - Int. Ceram. Rev. 65, 82–86 (2016). https://doi.org/10.1007/BF03401156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401156

Keywords

Navigation