Skip to main content
Log in

Autoradiographical evidence for increased thyrotropin binding to autonomously functioning thyroid gland tissue

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The aim of this study was to quantify thyrotropin (TSH) binding to individual cells from autonomously functioning thyroid gland tissue (AFTT) in comparison with the corresponding non-autonomous cells. Cryostatic tissue sections from ten thyroid glands with autonomously functioning adenomas were incubated in 125|-labeled TSH. TSH-binding density (TBD) was visualized by means of autoradiography and quantified by means of reflection photometry. Eight out of ten specimens showed a significant (p < 0.001), up to tenfold increase in TBD of AFTT cells. All ten specimens had a significantly increased number of TSH molecules bound per thyrocyte in comparison both with the corresponding non-autonomous cells and also with tissues from non-functioning thyroid neoplasms (n = 6). The increased TBD of AFTT persisted after transplantation onto nude mice. The paranodular tissue from thyroid glands with scintigraphically compensated adenomas showed in four out of six cases an increased TBD when compared with normal thyroid tissue. It can be concluded that AFTT possesses distinct cytoplasm membrane characteristics as evinced by TSH binding analysis. Increased TSH binding should be considered as a possible cause of metabolic hyperactivity of AFTT cells. The concomitant existence of functional autonomy in the paranodular tissue might lead to a false supposition of a compensated autonomous adenoma as revealed by scintigraphical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kermode J.C., Edmonds C.J., Morgans M.E. Receptors for thyroid-stimulating hormone in normal and pathological human thyroid tissues. J. Endocrinol. 102: 369, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Müller-Gärtner H.W., Schneider C., Bay V., Tadt A., Rehpenning W., de Heer K., Jessel M. Increased thyrotropin binding in hyperfunctioning thyroid nodules. Horm. Metab. Res. 19: 382, 1987.

    Article  PubMed  Google Scholar 

  3. Thomas C.G., Combest W., McQuade R., Jordan H., Reddick R., Nayfeh S.N. Biological characteristics of adenomatous noduies, adenomas, and hyperfunctioning nodules as defined by adenylate cyclase activity and TSH receptors. World J. Surg. 8: 445, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Davenport S., Müller-Gärtner H.-W., Nakajima Y., Howells R., Furmaniak J., Rees Smith B. The structure of TSH receptors and microsomal antigen in different human thyroid tissue specimens. 6th Joint Meeting of British Endocrine Societies, Bristol, 1987 (abstract).

  5. Goretzki P.E., Becker R., Malzer U., Wahl R.A., Branscheid D., Röher H.D. Adenylate cyclase activities and histomorphometric findings in “cold” and “hot” thyroid nodules. 29th Annual Meeting of the Acta Endocrinologica Congress, Göttingen, p. 70, 1985 (abstract).

  6. Farah C.S., Romaldini J.H., Camargo R.S., Dall’Antonia R.P., Werner R.S. Cyclic AMP (cAMP), triiodothyronine (T3), and thyroxine (T4) released from thyroid toxic nodules in response to TSH in vitro. In: Medeiros-Neto G., Gaitan E. (Eds.), Frontiers in thyroidology. Plenum Medical Book Company, New York-London, 1987, vol.2, p. 963.

    Google Scholar 

  7. Müller H.-W., Schröder S., Wasmus G., Schroiff R., Schmiegelow P., Rees Smith B. Autoradiographical portrayal of TSH receptors in human thyroid gland tissues. Horm. Metab. Res. 17: 619, 1985.

    Article  PubMed  Google Scholar 

  8. Horst W., Rösier H., Schneider C., Labhart A. 306 cases of toxic adenoma: clinical aspects, findings in radioiodine diagnostics, radiochromatography and histology; results of 131 I and surgical treatment. J. Nucl. Med. 8: 515, 1967.

    PubMed  CAS  Google Scholar 

  9. Peter H.J., Gerber H., Studer H., Smeds S. Pathogenesis of heterogeneity in human multinodular goiter — A study on growth and function of thyroid tissue transplanted onto nude mice. J. Clin. Invest. 76: 1992, 1985.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Schmiegelow P., Lindner J., Puschmann M. Autoradiographische Quantifizierung dosisabhàngiger 35 S-Cystin-bzw. 35 S-Methionin-Applikationen und des Einflusses unmarkierter Thioaminsäuren auf den 3 H-Thymidin-Markierungsindex der Keimzellen von Nägeln und Haaren im Tierexperiment. Akt. Dermatol. 9: 62, 1983.

    Google Scholar 

  11. Dörmer P., Brinkmann W., Stieber A., Stich W. Automatische Silberkornzählung in der Einzelzell-Autoradiographie — Eine neue photometrische Methode für die quantitative Autoradiographie. Klin. Wochenschr. 9: 477, 1966.

    Google Scholar 

  12. Rees Smith B., Hall R. Measurement of thyrotropin receptor antibodies. In: Langone J.J., van Vunakis H. (Eds.), Methods in enzymology, Vol. 74, Immunochemical techniques, part C. Academic Press, New York, London, Toronto, Sydney, San Francisco, 1981, p. 405.

    Chapter  Google Scholar 

  13. Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Scatchard G. The attraction of proteins for small molecules and ions. Ann. NY. Acad. Sci. 51: 660, 1949.

    Article  CAS  Google Scholar 

  15. Marquardt D.W. An algorithm for least squares estimation on nonlinear parameters. SIAM J. 11: 431, 1963.

    Google Scholar 

  16. Bard Y. Nonlinear parameter estimation. Academic Press, London, 1974.

    Google Scholar 

  17. Hays W.L. Statistics, ed. 3. Holt & Co., London, New York, Sidney, Toronto, 1969.

  18. Takahashi H., Jiang N.S., Gorman C.A., Lee C.Y. Thyrotropin receptors in normal and pathological human thyroid tissues. J. Clin. Endocrinol. Metab. 47: 870, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Abe Y., Ichikawa Y., Muraki T., Ito K., Homma M. Thyrotropin (TSH) receptor and adenylate cyclase activity in human thyroid tumors: absence of high affinity receptor and loss of TSH responsiveness in undifferentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 52: 23, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Carayon P., Guibout M., Lissitzky S. Thyrotropin receptor-adenylate cyclase system in plasma membranes from normal and diseased human thyroid glands. J. Endocrinol. Invest. 1: 321, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Carayon P., Thomas-Morvan C., Castanas E., Tubiana M. Human thyroid cancer: membrane thyrotropin binding and adenylate cyclase activity. J. Clin. Endocrinol. Metab. 51: 915, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Clark C.H., Gerend P.L., Cote T.C., Nissenson R.A. Thyrotropin binding and adenylate cyclase stimulation in thyroid neoplasms. Surgery 90: 252, 1981.

    PubMed  CAS  Google Scholar 

  23. Müller-Gärtner H.W., Schröder S., Merx A. TSH-receptor binding capacity and distribution pattern for thyrotropin in thyroid diseases, Acta Endocrinol. (Kbh.) (Suppl. 274) 111: 83, 1986.

    Google Scholar 

  24. Wiener J.D. Is partial thyroidectomy definitive treatment for Plummers disease (autonomous goiter)? Clin. Nucl. Med. 8: 78, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Gärtner, H.W., Jessel, M., Schneider, C. et al. Autoradiographical evidence for increased thyrotropin binding to autonomously functioning thyroid gland tissue. J Endocrinol Invest 11, 183–191 (1988). https://doi.org/10.1007/BF03350132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350132

Key Words

Navigation