Skip to main content
Log in

5-HT2 receptors are partially involved in the relationship between renin release and delta relative power

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

A strong relationship was previously described between the nocturnal oscillations of plasma renin activity (PRA) and the sleep cycles, with levels of PRA that increase during non rapid eye movement sleep and decrease during rapid eye movement sleep. This study was designed to determine whether ritanserin, a 5-hydroxytryptamine-2 (5-HT2) receptor antagonist known to increase slow wave sleep both in human and in animals and to decrease plasma renin activity response to serotonergic stimulation in the rat, would uncouple this relationship. Eight subjects underwent two randomized night studies after having received either placebo or 5 mg ritanserin administered in the morning. They were subjected to 8 hour polysomnography, including spectral analysis of the electroencephalogram and to continuous blood sampling. Blood was sampled from 2300 to 700h every 10 min and plasma renin activity (PRA) was measured by radioimmunoassay of angiotensin I. The nocturnal profiles were analysed using the pulse detection program ULTRA. Ritanserin produced the expected increase in slow wave sleep (SWS) duration (132±10 min under ritanserin vs 72±9 min under placebo; p<0.001) and a significant increase in delta relative power (69±2% under ritanserin vs 60±2% under placebo; p<0.01). The mean overnight PRA levels had a tendency to decrease under ritanserin (1.66±0.34 ngAngl/ml per h under ritanserin vs 1.48±0.31 ngAngl/ml per h under placebo; p=0.08). Individual PRA oscillations were preserved and remained strongly associated with delta power oscillations. PRA peak levels were similar in both experimental conditions, but the absolute amplitude of the oscillations was decreased under ritanserin (1.50±0.36 ngAngl/ml per h vs 1.04±0.14 ngAngl/ml per h; p<0.05). These results demonstrate that ritanserin, at a dose that augments delta power, only weakly affects renin release, which suggests that 5-HT2 receptors are only partially involved in the processes coupling renin release and SWS and that other mechanisms probably control the sleep-associated variations in PRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hackenthal E., Paul M., Ganten D., Taugner R. Morphology, physiology, and molecular biology of renin secretion. Physiol. Rev. 70: 1067, 1990.

    CAS  PubMed  Google Scholar 

  2. Brandenberger G., Follenius M., Goichot B., Saini J., Spiegel K., Ehrhart J., Simon C. Twenty-four-hour profiles of plasma renin activity in relation to the sleep-wake cycle. J. Hypertens. 12: 277, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Brandenberger G., Follenius M., Simon C., Ehrhart J., Libert J.P. Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep 11: 242, 1988.

    CAS  PubMed  Google Scholar 

  4. Brandenberger G., Krauth M.O., Ehrhart J., Libert J.P., Simon C., Follenius M. Modulation of episodic renin release during sleep in humans. Hypertension 15: 370, 1990.

    Article  CAS  PubMed  Google Scholar 

  5. Follenius M., Krieger J., Krauth M.O., Sforza F., Brandenberger G. Obstructive sleep apnea treatment: peripheral and central etfects of plasma renin activity and aldosterone. Sleep 14: 211, 1991.

    CAS  PubMed  Google Scholar 

  6. Schulz H., Brandenberger G., Gudewill C., Hasse D., Kiss E., Löhr K., Pollmächer T., Follenius M. Plasma renin activity and sleep-wake structure of narcoleptic patients and control subjects under continuous bedrest. Sleep 15: 423, 1992.

    CAS  PubMed  Google Scholar 

  7. Brandenberger G., Imbs J.L., Libert J.P., Ehrhart J., Simon C., Santoni J. Ph., Follenius M. Nocturnal oscillations in plasma renin activity during sleep in hypertensive patients: The influence of Perindopril. J. Endocrinol. Invest. 13: 559, 1990.

    CAS  PubMed  Google Scholar 

  8. Jouvet M. Biogenic amines and the states of sleep. Science 163: 32, 1969.

    Article  CAS  PubMed  Google Scholar 

  9. Ursin R. The effects of 5-hydroxytryptophan and L-tryptophan on wakefulness and sleep patterns in the cat. Brain. Res. 106: 105, 1976.

    Article  CAS  PubMed  Google Scholar 

  10. Cespuglio R., Houdouin F., Oulerich M., El Mansari M., Jouvet M. Axonal and somato-dendritic modalities of serotonin release: their involvement in sleep preparation, triggering and maintenance. J. Sleep Res. 1: 150, 1992.

    Article  PubMed  Google Scholar 

  11. Sharpley A.L., Solomon R.A., Fernando A.I., da Roza D.J.M., Cowen P.J. Dose-related etfects of selective 5-HT2 receptor antagonists on slow wave sleep in humans. Psychopharmacology 101: 568, 1990.

    Article  CAS  PubMed  Google Scholar 

  12. Idzikowski C., Mills F.J., James R.J. A dose-response study examining the effects of ritanserin on human slow wave sleep. Br. J. Clin. Pharmacol. 31: 193, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dugovic C., Wauquier A. 5-HT2 receptors could be primarily involved in the regulation of slow-wave sleep in the rat. Eur. J. Pharmacol. 137:145, 1987.

    Article  CAS  PubMed  Google Scholar 

  14. Van de Kar L.D., Wilkinson C.W., Skrobik Y., Brownfield M.S., Ganong W.F. Evidence that serotonergic neurons in the dorsal raphe nucleus exert a stimulatory effect on the secretion of renin but not of corticosterone. Brain. Res. 235: 233, 1982.

    Article  PubMed  Google Scholar 

  15. Rittenhouse P.A., Bakkum E.A., Levy A.D., Li Q., Yracheta J., Kunimoto K., Van de Kar L.D. Central stimulation of renin secretion through serotonergic non cardiovascular mechanisms. Neuroendocrinology 60: 205, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Rittenhouse P.A., Bakkum E.A., Van de Kar L.D., Evidence that the serotonin agonist, DOI, increases renin secretion and blood pressure through both central and peripheral 5-HT2 receptors. J. Pharmacol. Exp. Ther. 259: 58, 1991.

    CAS  PubMed  Google Scholar 

  17. Dugovic C. Functional activity of 5-HT2 receptors in the modulation of the sleep/wakefulness states. J. Sleep Res. 1:163, 1992.

    Article  PubMed  Google Scholar 

  18. Rechtschaffen A., Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stage of Human Subjects. Washington DC., US Government Printing Office, 1968.

    Google Scholar 

  19. Cooley J.W., Tuckey J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19: 297, 1965.

    Article  Google Scholar 

  20. Van Cauter E. Quantitative methods for the analysis of circadian and episodic fluctuations. In: Van Cauter E., Copinschi G. (Eds.), Human pituitary hormones: circadian and episodic variations. Martinus Nijhoff, The Hague, 1981, p. 1.

    Chapter  Google Scholar 

  21. Van de Kar L., Carnes M., Maslowski R.J., Bonadonna A.M., Rittenhouse P.A., Kunimoto K., Piechowski R.A., Bethea C.L. Neuroendocrine evidence for denervation supersensitivity of serotonin receptors: effects of the 5-HT agonist RU 24969 on corticotropin, corticosterone, prolactin and renin secretion. J. Pharmacol. Exp. Ther. 251: 428, 1989.

    PubMed  Google Scholar 

  22. Idzikowski C., Mills F.J., Glennard R. 5-Hydroxytryptamine-2 antagonist increases human slow wave sleep. Brain Res. 378: 164, 1986.

    Article  CAS  PubMed  Google Scholar 

  23. Solomon R.A., Sharpley A.L., Cowen P.J. 5-HT antagonists and slow wave sleep. Br. J. Clin. Pharmacol. 25: 125, 1988.

    Google Scholar 

  24. Mendlewicz J., Staner L., Kempenaers C., Simmonet M.P., Fransolet L. 5-HT2 receptor antagonism and slow wave sleep in man. In: Paoletti R., Vanhoute P.M., Brunello N., Maggi F.M. (Eds.), Serotonin: from cell biology to pharmacology and therapeutics. Kluwer Academic Publishers, Dordrecht, 1990, p. 523.

    Chapter  Google Scholar 

  25. Adam K., Oswald I. Effects of repeated ritanserin on middle-aged poor sleepers. Psychopharmacology 99: 219, 1989.

    Article  CAS  PubMed  Google Scholar 

  26. Lammers G.J., Arends J., Declerck A.C., Kamphuisen H.A.C., Schouwink G., Troost J. Ritanserin, a 5-HT2 receptor blocker, as add -on treatment in narcolepsy. Sleep 14: 130, 1991.

    CAS  PubMed  Google Scholar 

  27. Paiva T., Arriaga F., Wauquier A., Lara E., Largo R., Leitao J.N. Effects of ritanserin on sleep disturbances of dysthymic patients. Psychopharmacology 96: 395, 1988.

    Article  CAS  PubMed  Google Scholar 

  28. Dugovic C., Wauquier A. 5HT2 receptors could be primarily involved in the regulation of slow-wave sleep in the rat. Eur. J. Pharmacol. 137: 145, 1987.

    Article  CAS  PubMed  Google Scholar 

  29. Silhol S., Glin L., Gottesmann C. Study of the 5-HT2 antagonist ritanserin on sleep-waking cycle in the rat. Pharmacol. Biochem. Behav. 41: 241, 1991.

    Article  Google Scholar 

  30. Borbely A., Trachsel A., Tobler I. Effect of ritanserin on sleep stages and sleep EEG in the rat. Eur. J. Pharmacol. 156: 275, 1988.

    Article  CAS  PubMed  Google Scholar 

  31. Monti J.M., Pineyro G., Orellana C., Boussard M., Jantos H., Labraga P., Olivera S., Alvarino F. 5-HT receptor agonists 1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane (DOI) and 8-OH-DPAT increase wakefulness in the rat. Bio. Amines 7: 145, 1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenberger, G., Luthringer, R., Muller, G. et al. 5-HT2 receptors are partially involved in the relationship between renin release and delta relative power. J Endocrinol Invest 19, 556–562 (1996). https://doi.org/10.1007/BF03349016

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349016

Keywords

Navigation