Skip to main content
Log in

Parathyroid hormone suppression by 22-oxacalcitriol in the severe parathyroid hyperplasia

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The suppression of parathyroid hormone (PTH) secretion by the administration of 1,25-dihydroxyvitamin D [1,25(OH)2D3] and 22-oxacalcitriol (OCT) was evaluated in nude mice transplanted with human hyperplastic parathyroid tissue. The parathyroid tissue was obtained for transplantation from a patient with severe secondary hyperparathyroidism who had undergone a parathyroidectomy. Tissue specimens were transplanted into the gluteus muscle of female nude mice. Animals were divided into two groups; one group was fed a normal diet, and the other group was fed a low calcium diet during the administration of OCT and 1,25(OH)2D3. OCT and 1,25(OH)2D3 were intraperitoneally administered two times every week, for a total of eight times. Serum calcium and phosphate levels were significantly higher in the mouse administered 1,25(OH)2D3 than in the mouse administered OCT. Serum alkaline phosphatase activity was elevated similarly in the mouse administered either OCT or 1,25(OH)2D3. OCT strongly suppressed human PTH secretion from the graft in mice with normal serum calcium levels as did 1,25(OH)2D3. However, human PTH secretion from the graft was stimulated by the administration of a low-calcium diet, despite OCT and 1,25(OH)2D3 administration. In summary, OCT and 1,25(OH)2D3 suppress PTH secretion even from severe secondary hyperplastic parathyroid tissue only in mice with normal or high calcium serum levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slatopolsky E., Weerts C., Thielan J., Horst R., Harter H., Martin K.J. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxy-cholecalciferol in uremic patients. J. Clin. Invest. 74: 2136, 1984.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Slatopolsky E., Berkoben M., Kelber J., Brown A., Delmez J. Effects of calcitriol and non-calcemic vitamin D analogs on secondary hyperparathyroidism. Kidney Int. 42: S43, 1992.

    Google Scholar 

  3. Finch J.L., Brown A.J., Mori T., Nishii Y., Slatopolsky E. Suppression of PTH and decreased action on bone are partially responsible for the low calcemic activity of 22-oxacalcitriol relative to 1,25-(OH)2D3. J. Bone Miner. Res. 7: 835, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Brown A.J., Ritter C.R., Finch J.L., Morrissey J., Martin K.J., Murayama E., Nishii Y., Slatopolsky E. The noncalcemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthesis and secretion. J. Clin. Invest. 84: 728, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Naveh-Many T., Silver J. Effects of calcitriol, 22-oxacalcitriol, and calcipotriol on serum calcium and parathyroid hormone gene expression. Endocrinology 133: 2724, 1993.

    PubMed  CAS  Google Scholar 

  6. Tominaga Y., Takagi H. Molecular genetics of hyperparathyroid disease. Curr. Opin. Nephrol. Hypertens. 5: 336, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka Y., Funahashi H., Imai T., Wada M., Tominaga Y., Mishra S.K., Takagi H. Functional and morphometric study of cryopreserved human parathyroid transplanted into nude mice. World J. Surg. 20: 692, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Reichel H., Szabo A., Uhl J., Pessan S., Schmatz A., Schmidt-Gayk H., Ritz E. Intermittent versus continuous administration of 1,25-dihydroxyvitamin D3 in experimental renal hyperparathyroidism. Kidney Int. 44: 1259, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka Y., Funahashi H., Imai T., Tobinaga J., Murase H., Andoh H., Wada M., Matsuyama T., Tominaga Y., Takagi H. Heterotransplantation of human parathyroid glands into nude mice. Endocrine J. 42: 9, 1995.

    Article  CAS  Google Scholar 

  10. Tanaka Y., Funahashi H., Imai T., Seo H., Tominaga Y., Takagi H. Oxyphil cell function in secondary parathyroid hyperplasia. Nephron 73: 580, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Brown A.J., Berkoben M., Ritter C., Kubodera N., Nishii Y., Slatopolsky E. Metabolism of 22-oxacalcitriol by a vitamin D-inducible pathway in cultured parathyroid cells. Biochem. Biophys. Res. Commun. 189: 759, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Friedlaender M.M., Yagil Y., Wald H., Popovtzer M.M. 22-oxacalcitriol does not interfere with parathyroid hormone-induced phosphaturia or cyclic-AMP excretion. Bone 17: 301, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Akeno N., Saikatsu S., Kimura S., Horiuchi N. Induction of vitamin D 24-hydroxylase messenger RNA and activity by 22-oxacalcitriol in mouse kidney and duodenum. Possible role in decrease of plasma 1 alpha, 25-dihydroxyvitamin D3. Biochem. Pharmacol. 48: 2081, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Dusso A.S., Negrea L., Finch J., Kamimura S., Lopez-Hilker S., Mori T., Nishii Y., Brown A., Slapopolski E The effect of 22-oxacalcitriol on serum calcitriol. Endocrinology 130: 3129, 1992.

    PubMed  CAS  Google Scholar 

  15. Takizawa M., Fallon M., Stein B., Epstein S. The effect of a new vitamin D analog, 22-oxa-1α,25(OH)2D3, on bone mineral metabolism in normal male rats. Calcif. Tissue Int. 50: 521, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Kanatani M., Sugimoto T., Kaji H., Kano J., Chihara K. Effects of 22-oxacalcitriol on bone metabolism in vitro: comparison with calcitriol — effects of 22-oxacalcitriol on osteoclast-like cell formation and bone-resorbing activity. Eur. J. Endocrinol. 133: 618, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Jurutka P.W., Terpening C.M., Haussler M.R. The 1,25-dihydroxy-vitamin D3 receptor is phosphorylated in response to 1,25-dihydroxy-vitamin D3 and 22-oxacalcitriol in rat osteoblasts, and by casein kinase II, in vitro. Biochemistry 32: 8184, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Finch J.L., Brown A.J., Kubodera N., Nishii Y., Slatopolsky E. Differential effects of 1,25-(OH)2D3 and 22-oxacalcitriol on phosphate and calcium metabolism. Kidney Int. 43: 561, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Ladizesky M.M., Diaz M., Zeni S., Romeo H.E., Cardinali D.P., Mantalen C.A. Compensatory parathyroid hypertrophy after hemiparathyroidectomy in rats feeding a low calcium diet. Calcif. Tissue Int. 48: 63, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Lopez-Hilker S., Galceran T., Chan Y., Rapp N., Martin K.J., Slatopolsky E. Hypocalcemia may not be essential for the development of secondary hyperparathyroidism in chronic renal failure. J. Clin. Invest. 78: 1097, 1986.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Naveh-Many T., Rahamimov R., Livni N. Parathyroid cell proliferation in normal and chronic renal failure rats. The effect of calcium, phosphate, and vitamin D. J. Clin. Invest 96: 1786, 1995.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Russell J., Bar A., Sherwood L.M., Hurwitz S. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Endocrinology 132: 2639, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funahashi, H., Tanaka, Y., Imai, T. et al. Parathyroid hormone suppression by 22-oxacalcitriol in the severe parathyroid hyperplasia. J Endocrinol Invest 21, 43–47 (1998). https://doi.org/10.1007/BF03347285

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347285

Key-words

Navigation