Skip to main content
Log in

Defects of steroidogenesis

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Arch Dis Child 2006, 91: 554–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Prader A, Gurtner HP. Das Syndrom des Pseudohermaphroditismus masculinus bei kongenitaler Nebennierenrindenhyperplasie ohne Androgenüberproduktion. Helv Paediatr Acta 1955, 10: 397–412.

    PubMed  CAS  Google Scholar 

  3. Lin D, Sugawara T, Strauss JF 3rd, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995, 267: 1828–31.

    PubMed  CAS  Google Scholar 

  4. Kim CJ, Lin L, Huang N, et al. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 2008, 93: 696–702.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Apter D, Viinikka L, Vihko R. Hormonal pattern of adolescent menstrual cycles. J Clin Endocrinol Metab 1978, 47: 944–54.

    PubMed  CAS  Google Scholar 

  6. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984, 59: 551–5.

    PubMed  CAS  Google Scholar 

  7. Oppenheimer E, Linder B, DiMartino-Nardi J. Decreased insulin sensitivity in prepubertal girls with premature adrenarche and acanthosis nigricans. J Clin Endocrinol Metab 1995, 80: 614–8.

    PubMed  CAS  Google Scholar 

  8. Ibanez L, Potau N, Marcos MV, de Zegher F. Exaggerated adrenarche and hyperinsulinism in adolescent girls born small for gestational age. J Clin Endocrinol Metab 1999, 84: 4739–41.

    PubMed  CAS  Google Scholar 

  9. Cutler GB Jr, Glenn M, Bush M, Hodgen GD, Graham CE, Loriaux DL. Adrenarche: a survey of rodents, domestic animals, and primates. Endocrinology 1978, 103: 2112–8.

    PubMed  CAS  Google Scholar 

  10. Smail PJ, Faiman C, Hobson WC, Fuller GB, Winter JS. Further studies on adrenarche in nonhuman primates. Endocrinology 1982, 111: 844–8.

    PubMed  CAS  Google Scholar 

  11. Chung BC, Picado-Leonard J, Haniu M, et al. Cytochrome P450c17 (steroid 17 alpha-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci U S A 1987, 84: 407–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Picado-Leonard J, Miller WL. Cloning and sequence of the human gene for P450c17 (steroid 17 alpha-hydroxylase/17,20 lyase): similarity with the gene for P450c21. DNA 1987, 6: 439–48.

    PubMed  CAS  Google Scholar 

  13. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998, 273: 3158–65.

    PubMed  CAS  Google Scholar 

  14. Nakajin S, Kobune S, Shinoda M. [Carbon monoxide inhibition of 21-hydroxylase and 17 alpha-hydroxylase activities in porcine adrenal microsomes]. Yakugaku Zasshi 1983, 103: 895–8.

    PubMed  CAS  Google Scholar 

  15. Geller DH, Auchus RJ, Miller WL. P450c17 mutations R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b5. Mol Endocrinol 1999, 13: 167–75.

    PubMed  CAS  Google Scholar 

  16. Zhang LH, Rodriguez H, Ohno S, Miller WL. Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci U S A 1995, 92: 10619–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Miller WL. Steroid 17alpha-hydroxylase deficiency—not rare everywhere. J Clin Endocrinol Metab 2004, 89: 40–2.

    PubMed  CAS  Google Scholar 

  18. Miller WL. Androgen synthesis in adrenarche. Rev Endocr Metab Disord 2009, 10: 3–17.

    PubMed  CAS  Google Scholar 

  19. Fluck CE, Miller WL. GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. Mol Endocrinol 2004, 18: 1144–57.

    PubMed  Google Scholar 

  20. Geller DH, Auchus RJ, Mendonca BB, Miller WL. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet 1997, 17: 201–5.

    PubMed  CAS  Google Scholar 

  21. Biason-Lauber A, Kempken B, Werder E, et al. 17alpha-hydroxylase/17,20-lyase deficiency as a model to study enzymatic activity regulation: role of phosphorylation. J Clin Endocrinol Metab 2000, 85: 1226–31.

    PubMed  CAS  Google Scholar 

  22. Biason A, Mantero F, Scaroni C, Simpson ER, Waterman MR. Deletion within the CYP17 gene together with insertion of foreign DNA is the cause of combined complete 17 alpha-hydroxylase/17,20-lyase deficiency in an Italian patient. Mol Endocrinol 1991, 5: 2037–45.

    PubMed  CAS  Google Scholar 

  23. Biason-Lauber A, Leiberman E, Zachmann M. A single amino acid substitution in the putative redox partner-binding site of P450c17 as cause of isolated 17,20-lyase deficiency. J Clin Endocrinol Metab 1997, 82: 3807–12.

    PubMed  CAS  Google Scholar 

  24. Biglieri EG, Herron MA, Brust N. 17-hydroxylation deficiency in man. J Clin Invest 1966, 45: 1946–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Di Cerbo A, Biason-Lauber A, Savino M, et al. Combined 17alpha-Hydroxylase/17,20-lyase deficiency caused by Phe93Cys mutation in the CYP17 gene. J Clin Endocrinol Metab 2002, 87: 898–905.

    Google Scholar 

  26. Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17 alpha-hydroxylase and 17,20-lyase activities of P450c17: contributions of serine 106 and P450 reductase. Endocrinology 1993, 132: 2498–506.

    PubMed  CAS  Google Scholar 

  27. Rosa S, Duff C, Meyer M, et al. P450c17 deficiency: clinical and molecular characterization of six patients. J Clin Endocrinol Metab 2007, 92: 1000–7.

    PubMed  CAS  Google Scholar 

  28. Costa-Santos M, Kater CE, Auchus RJ; Brazilian Congenital Adrenal Hyperplasia Multicenter Study Group. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab 2004, 89: 49–60.

    PubMed  CAS  Google Scholar 

  29. Yanase T, Simpson ER, Waterman MR. 17 alpha-hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev 1991, 12: 91–108.

    PubMed  CAS  Google Scholar 

  30. Martin RM, Lin CJ, Costa EM, et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J Clin Endocrinol Metab 2003, 88: 5739–46.

    PubMed  CAS  Google Scholar 

  31. Taniyama M, Tanabe M, Saito H, Ban Y, Nawata H, Yanase T. Subtle 17alpha-hydroxylase/17,20-lyase deficiency with homozygous Y201 N mutation in an infertile woman. J Clin Endocrinol Metab 2005, 90: 2508–11.

    PubMed  CAS  Google Scholar 

  32. Auchus RJ, Miller WL. Molecular modeling of human P450c17 (17alpha-hydroxylase/17,20-lyase): insights into reaction mechanisms and effects of mutations. Mol Endocrinol 1999, 13: 1169–82.

    PubMed  CAS  Google Scholar 

  33. Zachmann M, Kempken B, Manella B, Navarro E. Conversion from pure 17,20-desmolase-to combined 17,20-desmolase/17 alpha-hydroxylase deficiency with age. Acta Endocrinol (Copenh) 1992, 127: 97–9.

    PubMed  CAS  Google Scholar 

  34. Wood CE, Cline JM, Anthony MS, Register TC, Kaplan JR. Adrenocortical effects of oral estrogens and soy isoflavones in female monkeys. J Clin Endocrinol Metab 2004, 89: 2319–25.

    PubMed  CAS  Google Scholar 

  35. Jung-Hoffmann C, Kuhl H. Divergent effects of two low-dose oral contraceptives on sex hormone-binding globulin and free testosterone. Am J Obstet Gynecol 1987, 156: 199–203.

    PubMed  CAS  Google Scholar 

  36. Murphy A, Cropp CS, Smith BS, Burkman RT, Zacur HA. Effect of low-dose oral contraceptive on gonadotropins, androgens, and sex hormone binding globulin in nonhirsute women. Fertil Steril 1990, 53: 35–9.

    PubMed  CAS  Google Scholar 

  37. Moutos D, Smith S, Zacur H. The effect of monophasic combinations of ethinyl estradiol and norethindrone on gonadotropins, androgens and sex hormone binding globulin: a randomized trial. Contraception 1995, 52: 105–9.

    PubMed  CAS  Google Scholar 

  38. Dören M, Rübig A, Coelingh Bennink HJ, Holzgreve W. Differential effects on the androgen status of postmenopausal women treated with tibolone and continuous combined estradiol and norethindrone acetate replacement therapy. Fertil Steril 2001, 75: 554–9.

    PubMed  Google Scholar 

  39. Tazuke S, Khaw KT, Barrett-Connor E. Exogenous estrogen and endogenous sex hormones. Medicine (Baltimore) 1992, 71: 44–51.

    CAS  Google Scholar 

  40. Casson PR, Elkind-Hirsch KE, Buster JE, Hornsby PJ, Carson SA, Snabes MC. Effect of postmenopausal estrogen replacement on circulating androgens. Obstet Gynecol 1997, 90: 995–8.

    PubMed  CAS  Google Scholar 

  41. Slater CC, Zhang C, Hodis HN, et al. Comparison of estrogen and androgen levels after oral estrogen replacement therapy. J Reprod Med 2001, 46: 1052–6.

    PubMed  CAS  Google Scholar 

  42. Kraemer RR, Synovitz LB, Gimpel T, Kraemer GR, Johnson LG, Castracane VD. Effect of estrogen on serum DHEAin younger and older women and the relationship of DHEA to adiposity and gender. Metabolism 2001, 50: 488–93.

    PubMed  CAS  Google Scholar 

  43. ten Kate-Booij MJ, Cobbaert C, Koper JW, de Jong FH. Deficiency of 17,20-lyase causing giant ovarian cysts in a girl and a female phenotype in her 46,XY sister: case report. Hum Reprod 2004, 19: 456–9.

    PubMed  Google Scholar 

  44. Ergun-Longmire B, Auchus R, Papari-Zareei M, Tansil S, Wilson RC, New MI. Two novel mutations found in a patient with 17alpha-hydroxylase enzyme deficiency. J Clin Endocrinol Metab 2006, 91: 4179–82.

    PubMed  CAS  Google Scholar 

  45. Hegesh E, Hegesh J, Kaftory A. Congenital methemoglobinemia with a deficiency of cytochrome b5. N Engl J Med 1986, 314: 757–61.

    PubMed  CAS  Google Scholar 

  46. Giordano SJ, Kaftory A, Steggles AW. A splicing mutation in the cytochrome b5 gene from a patient with congenital methemoglobinemia and pseudohermaphrodism. Hum Genet 1994, 93: 568–70.

    PubMed  CAS  Google Scholar 

  47. Bongiovanni AM. The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase. J Clin Invest 1962, 41: 2086–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. New MI, White PC, Pang SA, Dupont B, Speiser PW. The adrenal hyperplasias. 6th ed. New York: McGraw-Hill, 1989.

    Google Scholar 

  49. Miller WL, Levine LS. Molecular and clinical advances in congenital adrenal hyperplasia. J Pediatr 1987, 111: 1–17.

    PubMed  CAS  Google Scholar 

  50. Miller WL. Genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1994, 78: 241–6.

    PubMed  CAS  Google Scholar 

  51. Hughes IA. Congenital adrenal hyperplasia—a continuum of disorders. Lancet 1998, 352: 752–4.

    PubMed  CAS  Google Scholar 

  52. Honour JW, Torresani T. Evaluation of neonatal screening for congenital adrenal hyperplasia. Horm Res 2001, 55: 206–11.

    PubMed  CAS  Google Scholar 

  53. Pang S, Hotchkiss J, Drash AL, Levine LS, New MI. Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1977, 45: 1003–8.

    PubMed  CAS  Google Scholar 

  54. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 2000, 21: 245–91.

    PubMed  CAS  Google Scholar 

  55. Therrell BL. Newborn screening for congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001, 30: 15–30.

    PubMed  CAS  Google Scholar 

  56. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985, 37: 650–67.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Fitness J, Dixit N, Webster D, et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1999, 84: 960–6.

    PubMed  CAS  Google Scholar 

  58. Oelkers W. Adrenal insufficiency. N Engl J Med 1996, 335: 1206–12.

    PubMed  CAS  Google Scholar 

  59. Lamberts SW, Bruining HA, de Jong FH. Corticosteroid therapy in severe illness. N Engl J Med 1997, 337: 1285–92.

    PubMed  CAS  Google Scholar 

  60. Merke DP, Chrousos GP, Eisenhofer G, et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med 2000, 343: 1362–8.

    PubMed  CAS  Google Scholar 

  61. Barnes RB, Rosenfield RL, Ehrmann DA, et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994, 79: 1328–33.

    PubMed  CAS  Google Scholar 

  62. Deneux C, Tardy V, Dib A, et al. Phenotype-genotype correlation in 56 women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2001, 86: 207–13.

    PubMed  CAS  Google Scholar 

  63. Mulaikal RM, Migeon CJ, Rock JA. Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N Engl J Med 1987, 316: 178–82.

    PubMed  CAS  Google Scholar 

  64. Lo JC, Grumbach MM. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol Metab Clin North Am 2001, 30: 207–29.

    PubMed  CAS  Google Scholar 

  65. Premawardhana LD, Hughes IA, Read GF, Scanlon MF. Longer term outcome in females with congenital adrenal hyperplasia (CAH): the Cardiff experience. Clin Endocrinol (Oxf) 1997, 46: 327–32.

    CAS  Google Scholar 

  66. Urban MD, Lee PA, Migeon CJ. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N Engl J Med 1978, 299: 1392–6.

    PubMed  CAS  Google Scholar 

  67. Cabrera MS, Vogiatzi MG, New MI. Long term outcome in adult males with classic congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001, 86: 3070–8.

    PubMed  CAS  Google Scholar 

  68. Stikkelbroeck NM, Otten BJ, Pasic A, et al. High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001, 86: 5721–8.

    PubMed  CAS  Google Scholar 

  69. Murphy H, George C, de Kretser D, Judd S. Successful treatment with ICSI of infertility caused by azoospermia associated with adrenal rests in the testes: case report. Hum Reprod 2001, 16: 263–7.

    PubMed  CAS  Google Scholar 

  70. Walker BR, Skoog SJ, Winslow BH, Canning DA, Tank ES. Testis sparing surgery for steroid unresponsive testicular tumors of the adrenogenital syndrome. J Urol 1997, 157: 1460–3.

    PubMed  CAS  Google Scholar 

  71. Balsamo A, Cacciari E, Piazzi S, et al. Congenital adrenal hyperplasia: neonatal mass screening compared with clinical diagnosis only in the Emilia-Romagna region of Italy, 1980–1995. Pediatrics 1996, 98: 362–7.

    PubMed  CAS  Google Scholar 

  72. Tajima T, Fujieda K, Nakae J, et al. Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan. J Clin Endocrinol Metab 1997, 82: 2350–6.

    PubMed  CAS  Google Scholar 

  73. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 1998, 101: 583–90.

    PubMed  Google Scholar 

  74. Moran C, Azziz R, Carmina E, et al. 21-Hydroxylase-deficient non-classic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 2000, 183: 1468–74.

    PubMed  CAS  Google Scholar 

  75. Knochenhauer ES, Cortet-Rudelli C, Cunnigham RD, Conway-Myers BA, Dewailly D, Azziz R. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J Clin Endocrinol Metab 1997, 82: 479–85.

    PubMed  CAS  Google Scholar 

  76. Torresani T, Biason-Lauber A. Congenital adrenal hyperplasia: diagnostic advances. J Inherit Metab Dis 2007, 30: 563–75.

    PubMed  CAS  Google Scholar 

  77. Clayton PE, Miller WL, Oberfield SE, Ritzén EM, Sippell WG, Speiser PW; ESPE/ LWPES CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm Res 2002, 58: 188–95.

    PubMed  CAS  Google Scholar 

  78. Pascoe L, Curnow KM, Slutsker L, Rosler A, White PC. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci U S A 1992, 89: 4996–5000.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Portrat-Doyen S, Tourniaire J, Richard O, et al. Isolated aldosterone synthase deficiency caused by simultaneous E198D and V386A mutations in the CYP11B2 gene. J Clin Endocrinol Metab 1998, 83: 4156–61.

    PubMed  CAS  Google Scholar 

  80. New MI. The prismatic case of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1994, 79: 1–3.

    PubMed  CAS  Google Scholar 

  81. Tomlinson JW, Walker EA, Bujalska IJ, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004, 25: 831–66.

    PubMed  CAS  Google Scholar 

  82. Biason-Lauber A, Suter SL, Shackleton CH, Zachmann M. Apparent cortisone reductase deficiency: a rare cause of hyperandrogenemia and hypercortisolism. Horm Res 2000, 53: 260–6.

    PubMed  CAS  Google Scholar 

  83. Draper N, Walker EA, Bujalska IJ, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet 2003, 34: 434–9.

    PubMed  CAS  Google Scholar 

  84. Jamieson A, Wallace AM, Andrew R, et al. Apparent cortisone reductase deficiency: a functional defect in 11beta-hydroxysteroid dehydrogenase type 1. J Clin Endocrinol Metab 1999, 84: 3570–4.

    PubMed  CAS  Google Scholar 

  85. Malunowicz EM, Romer TE, Urban M, Bossowski A. 11beta-hydroxysteroid dehydrogenase type 1 deficiency (‘apparent cortisone reductase deficiency’) in a 6-year-old boy. Horm Res 2003, 59: 205–10.

    PubMed  CAS  Google Scholar 

  86. Nikkilä H, Tannin GM, New MI, et al. Defects in the HSD11 gene encoding 11 beta-hydroxysteroid dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency. J Clin Endocrinol Metab 1993, 77: 687–91.

    PubMed  Google Scholar 

  87. Phillipov G, Palermo M, Shackleton CH. Apparent cortisone reductase deficiency: a unique form of hypercortisolism. J Clin Endocrinol Metab 1996, 81: 3855–60.

    PubMed  CAS  Google Scholar 

  88. Lavery GG, Walker EA, Tiganescu A, et al. Steroid biomarkers and genetic studies reveal inactivating mutations in hexose-6-phosphate dehydrogenase in patients with cortisone reductase deficiency. J Clin Endocrinol Metab 2008, 93: 3827–32.

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Zachmann M, Werder EA, Prader A. Two types of male pseudohermaphroditism due to 17, 20-desmolase deficiency. J Clin Endocrinol Metab 1982, 55: 487–90.

    PubMed  CAS  Google Scholar 

  90. Imperato-McGinley J, Gautier T, Peterson RE, Shackleton C. The prevalence of 5 alpha-reductase deficiency in children with ambiguous genitalia in the Dominican Republic. J Urol 1986, 136: 867–73.

    PubMed  CAS  Google Scholar 

  91. Conte FA, Grumbach MM, Ito Y, Fisher CR, Simpson ER. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J Clin Endocrinol Metab 1994, 78: 1287–92.

    PubMed  CAS  Google Scholar 

  92. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995, 80: 3689–98.

    PubMed  CAS  Google Scholar 

  93. Lin L, Ercan O, Raza J, et al. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans. J Clin Endocrinol Metab 2007, 92: 982–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Maffei L, Murata Y, Rochira V, et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 2004, 89: 61–70.

    PubMed  CAS  Google Scholar 

  95. Mullis PE, Yoshimura N, Kuhlmann B, Lippuner K, Jaeger P, Harada H. Aromatase deficiency in a female who is compound heterozygote for two new point mutations in the P450arom gene: impact of estrogens on hypergonadotropic hypogonadism, multicystic ovaries, and bone densitometry in childhood. J Clin Endocrinol Metab 1997, 82: 1739–45.

    PubMed  CAS  Google Scholar 

  96. Bulun SE. Aromatase deficiency in women and men: would you have predicted the phenotypes? J Clin Endocrinol Metab 1996, 81: 867–71.

    PubMed  CAS  Google Scholar 

  97. Simpson ER. Aromatase: biologic relevance of tissue-specific expression. Semin Reprod Med 2004, 22: 11–23.

    PubMed  CAS  Google Scholar 

  98. Simpson ER, Jones ME. Of mice and men: the many guises of estrogens. Ernst Schering Found Symp Proc 2006: 45–67.

  99. Simpson ER, Michael MD, Agarwal VR, Hinshelwood MM, Bulun SE, Zhao Y. Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage. Faseb J 1997, 11: 29–36.

    PubMed  CAS  Google Scholar 

  100. Shozu M, Sebastian S, Takayama K, et al. Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene. N Engl J Med 2003, 348: 1855–65.

    PubMed  CAS  Google Scholar 

  101. Tiulpakov A, Kalintchenko N, Semitcheva T, et al. A potential rearrangement between CYP19 and TRPM7 genes on chromosome 15q21.2 as a cause of aromatase excess syndrome. J Clin Endocrinol Metab 2005, 90: 4184–90.

    PubMed  CAS  Google Scholar 

  102. Berkovitz GD, Guerami A, Brown TR, MacDonald PC, Migeon CJ. Familial gynecomastia with increased extraglandular aromatization of plasma carbon19-steroids. J Clin Invest 1985, 75: 1763–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Stratakis CA, Vottero A, Brodie A, et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J Clin Endocrinol Metab 1998, 83: 1348–57.

    PubMed  CAS  Google Scholar 

  104. Leiberman E, Zachmann M. Familial adrenal feminization probably due to increased steroid aromatization. Horm Res 1992, 37: 96–102.

    PubMed  CAS  Google Scholar 

  105. Miller WL. Congenital adrenal hyperplasia. N Engl J Med 1986, 314: 1321–2.

    PubMed  CAS  Google Scholar 

  106. Peterson RE, Imperato-McGinley J, Gautier T, Shackleton C. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic microsomal mixed-function oxidases. A new variant of congenital adrenal hyperplasia. N Engl J Med 1985, 313: 1182–91.

    PubMed  CAS  Google Scholar 

  107. Antley R, Bixler D. Trapezoidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig Artic Ser 1975, 11: 397–401.

    PubMed  CAS  Google Scholar 

  108. Crisponi G, Porcu C, Piu ME. Antley-Bixler syndrome: case report and review of the literature. Clin Dysmorphol 1997, 6: 61–8.

    PubMed  CAS  Google Scholar 

  109. Fluck CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet 2004, 36: 228–30.

    PubMed  Google Scholar 

  110. Scott RR, Miller WL. Genetic and clinical features of p450 oxidoreductase deficiency. Horm Res 2008, 69: 266–75.

    PubMed  CAS  Google Scholar 

  111. Fluck C, Pandey A, Huang N, Agrawal V, Miller WL. P450 oxidoreductase deficiency-a new form of congenital adrenal hyperplasia. Basel: Karger, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Biason-Lauber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biason-Lauber, A., Boscaro, M., Mantero, F. et al. Defects of steroidogenesis. J Endocrinol Invest 33, 756–766 (2010). https://doi.org/10.1007/BF03346683

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346683

Key-words

Navigation