Skip to main content
Log in

The role of 21-hydroxylase in the pathogenesis of adrenal masses: Review of the literature and focus on our own experience

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

An exaggerated response of 17-hydroxyprogesterone (17-OHP) to exogenous ACTH stimulation has been found in 30 to 70% of patients with incidentally discovered adrenal tumors, supporting the concept that congenital 21-hydroxylase deficiency may be a predisposing factor for adrenocortical tumorigenesis. Decreased expression of 21-hydroxylase gene has been observed in sporadic non-functioning adrenocortical adenomas and adrenocortical carcinomas, in agreement with the reduced steroidogenic activity found in these types of tumors. Screening studies for the presence of mutations in CYP21A2 gene, encoding 21-hydroxylase, in patients with sporadic adrenocortical tumors yielded discordant results. Overall, a higher frequency of germline 21-hydroxylase mutation carriers has been found among patients with adrenal tumors, including incidentalomas, than in the general population. However, the presence of mutations did not correlate with endocrine test results and tumor mass features, suggesting that 21-hydroxylase deficiency does not represent a relevant mechanism in adrenal tumorigenesis. Mechanisms leading to reduced 21-hydroxylase expression and activity are still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzon L, Sonino N, Fallo F, Palù G, Boscaro M. Prevalence and natural history of adrenal incidentalomas. Eur J Endocrinol 2003, 149: 273–85.

    Article  PubMed  CAS  Google Scholar 

  2. Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B. Incidentally discovered adrenal masses. Endocr Rev 1995, 16: 460–84.

    PubMed  CAS  Google Scholar 

  3. Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet 2005, 365: 2125–36.

    Article  PubMed  Google Scholar 

  4. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 2000, 21: 245–91.

    PubMed  CAS  Google Scholar 

  5. Ravichandran R, Lafferty F, McGinniss MJ, Taylor HC. Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab 1996, 81: 1776–9.

    PubMed  CAS  Google Scholar 

  6. Nagasaka S, Kubota K, Motegi T, et al. A case of silent 21-hydroxylase deficiency with persistent adrenal insufficiency after removal of an adrenal incidentaloma. Clin Endocrinol (Oxf) 1996, 44: 111–6.

    Article  CAS  Google Scholar 

  7. Barzon L, Scaroni C, Sonino N,et al. Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab 1998, 83: 55–62.

    PubMed  CAS  Google Scholar 

  8. Paine AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004, 25: 947–70.

    Article  CAS  Google Scholar 

  9. Pezzi V, Mathis JM, Rainey WE, Carr BR. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J Steroid Biochem Mol Biol 2003, 87: 181–9.

    Article  PubMed  CAS  Google Scholar 

  10. John ME, John MC, Boggaram V, Simpson ER, Waterman MR. Transcriptional regulation of steroid hydroxylase genes by corticotropin. Proc Natl Acad Sci USA 1986, 83: 4715–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Bird IM, Mason JI, Rainey WE. Protein kinase A, protein kinase C, and Ca2+-regulated expression of 21-hydroxylase cytochrome P450 in H295R human adrenocortical cells. J Clin Endocrinol Metab 1998, 83: 1592–7.

    PubMed  CAS  Google Scholar 

  12. Endoh A, Yang L, Hornsby PJ. CYP21 pseudogene transcripts are much less abundant than those from the active gene in normal human adrenocortical cells under various conditions in culture. Mol Cell Endocrinol 1998, 137: 13–9.

    Article  PubMed  CAS  Google Scholar 

  13. Shannon MF, Pell LM, Lenardo MJ, et al. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoetic growth factor genes. Mol Cell Biol 1990, 10: 2950–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Wijesuriya SD, Zhang G, Dardis A, Miller WL. Transcriptional regulatory elements of the human gene for cytochrome P450c21 (steroid 21-hydroxylase) lie within intron 35 of the linked C4B gene. J Biol Chem 1999, 274: 38097–106.

    Article  PubMed  CAS  Google Scholar 

  15. Tee MK, Babalola GO, Aza-Blanc P, Speek M, Gitelman SE, Miller WL. A promoter within intron 35 of the human C4A gene initiates abundant adrenal-specific transcription of a 1 kb RNA: location of a cryptic CYP21 promoter element? Hum Mol Genet 1995, 4: 2109–16.

    Article  PubMed  CAS  Google Scholar 

  16. Sirianni R, Seely JB, Attia G, et al. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 2002, 174: R13–7.

    Article  PubMed  CAS  Google Scholar 

  17. Bavner A, Sanyal S, Gustafsson JA, Treuter E. Transcriptional corepression by SHP: molecular mechanisms and physiological consequences. Trends Endocrinol Metab 2005, 16: 478–88.

    Article  PubMed  CAS  Google Scholar 

  18. Lee HJ, Lee YF, Chang C. TR4 orphan receptor represses the human steroid 21-hydroxylase gene expression through the monomeric AGGTCA motif. Biochem Biophys Res Comm 2001, 285: 1361–8.

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Li XD, Vaheri A, Voutilainen R. DNA methylation affects cell proliferation, cortisol secretion and steroidogenic gene expression in human adrenocortical NCI-H295R cells. J Mol Endocrinol 2004, 33: 651–62.

    Article  PubMed  CAS  Google Scholar 

  20. Coulter CL, Jaffe RB. Functional maturation of the primate fetal adrenal in vivo: 3. Specificzonal localization and developmental regulation of CYP21A2 (P450c21) and CYP11B1/ CYP11B2 (P450c11/aldosterone synthase) lead to integrated concept of zonal and temporal steroid biosynthesis. Endocrinology 1998, 139: 5144–50.

    PubMed  CAS  Google Scholar 

  21. Narasaka T, Suzuki T, Moriya T, Sasano H. Temporal and spatial distribution of corticosteroidogenic enzymes immunore-activity in developing human adrenal. Mol Cell Endocrinol 2001, 174: 111–20.

    Article  PubMed  CAS  Google Scholar 

  22. Sasano H, Suzuki T, Nagura H, Nishikawa T. Steroidogenesis in human adrenocortical carcinoma: biochemical activities, immunohistochemistry and in situ hybridization of steroidogenic enzymes and histopathologic study in nine cases. Hum Pathol 1993, 24: 397–404.

    Article  PubMed  CAS  Google Scholar 

  23. Ogo A, Haji M, Yanase T, Kato K, Nawata H. The modification and expression of 21-hydroxylase gene in normal human adrenal gland and adrenal cancer. J Endocrinol Invest 1991, 14: 831–7.

    Article  PubMed  CAS  Google Scholar 

  24. Rácz K, Pinet F, Marton T, Szende B, Gláz E, Corvol P. Expression of steroidogenic enzyme messenger ribonucleic acids and corticosteroid production in aldosterone-producing and “nonfunctioning” adrenal adenomas. J Clin Endocrinol Metab 1993, 77: 677–82.

    PubMed  Google Scholar 

  25. Beuschlein F, Schulze E, Mora P, et al. Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors. J Clin Endocrinol Metab 1998, 83: 2585–8.

    PubMed  CAS  Google Scholar 

  26. Bassett MH, Mayhew B, Rehman K, et al. Expression profiles for steroidogenic enzymes in adrenocortical disease. J Clin Endocrinol Metab 2005, 90: 5446–55.

    Article  PubMed  CAS  Google Scholar 

  27. Assié G, Auzan C, Gasc JM, et al. Steroidogenesis in aldosterone-producing adenoma revisited by transcriptome analysis. J Clin Endocrinol Metab 2005, 90: 6638–49.

    Article  PubMed  CAS  Google Scholar 

  28. Balsamo A, Cacciari E, Baldazzi L, et al. CYP21 analysis and phenotype/genotype relationship in the screened population of the Italian Emilia-Romagna region. Clin Endocrinol (Oxf) 2000, 53: 117–25.

    Article  CAS  Google Scholar 

  29. Jaresch S, Kornely E, Kley HK, Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab 1992, 74: 685–9.

    PubMed  CAS  Google Scholar 

  30. Wang J, Bissada MA, Williamson HO, Yakout H, Bissada NK. Adrenal tumors associated with inadequately treated congenital adrenal hyperplasia. Can J Urol 2002, 9: 1563–4.

    PubMed  Google Scholar 

  31. Kurtoglu S, Atabek ME, Keskin M, Patiroglu TE. Adrenocortical adenoma associated with inadequately treated congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 2003, 16: 1311–4.

    PubMed  Google Scholar 

  32. Ravichandran R, Lafferty F, McGinniss MJ, Taylor HC. Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab 1996, 81: 1776–9.

    PubMed  CAS  Google Scholar 

  33. Umpierrez MB, Fackler S, Umpierrez GE, Rubin J. Adrenal myelolipoma associated with endocrine dysfunction: review ofthe literature. Am J Med Sci 1997, 314: 338–41.

    Article  PubMed  CAS  Google Scholar 

  34. Pignatelli D, Vendeira P, Cabrai AC. Adrenal incidentalomas: adrenal hemangioma in a patient with congenital adrenal hyperplasia. South Med J 1998, 91: 775–9.

    Article  PubMed  CAS  Google Scholar 

  35. Mokshagundam S, Surks Ml. Congenital adrenal hyperplasia diagnosed in a man during workup for bilateral adrenal masses. Arch Intern Med 1993, 153: 1389–91.

    Article  PubMed  CAS  Google Scholar 

  36. Norris AM, O’Driscoll JB, Mamtora H. Macronodular congenital adrenal hyperplasia in an adult with female pseudohermaphroditism. Eur Radiol 1996, 6: 470–2.

    Article  PubMed  CAS  Google Scholar 

  37. Falhammar H, Thoren M. An 88-year-old woman with adrenal tumor and congenital adrenal hyperplasia: connection or coincidence? J Endocrinol Invest 2005, 28: 449–53.

    Article  PubMed  CAS  Google Scholar 

  38. Dubey GK, Dotiwalla HH, Choubey BS, Kher A. A case report of virilising adrenal cortical carcinoma. J Assoc Physicians India 1981, 29: 491–3.

    PubMed  CAS  Google Scholar 

  39. Bauman A, Bauman CG. Virilizing adrenocortical carcinoma. Development in a patient with salt-losing congenital adrenal hyperplasia. JAMA 1982, 248: 3140–1.

    Article  PubMed  CAS  Google Scholar 

  40. Lightner ES, Levine LS. The adrenal incidentaloma. A pediatrie perspective. Am J Dis Child 1993, 147: 1274–6.

    Article  PubMed  CAS  Google Scholar 

  41. Seppel T, Schlaghecke R. Augmented 17 alpha-hydroxyprogesterone response to ACTH stimulation as evidence of decreased 21-hydroxylase activity in patients with incidentally discovered adrenal tumours (‘incidentalomas’). Clin Endocrinol (Oxf) 1994, 41: 445–51.

    Article  CAS  Google Scholar 

  42. Ambrosi B, Peverelli S, Passini E, et al. Abnormalities of endocrine function in patients with clinically ‘silent’ adrenal masses. Eur J Endocrinol 1995, 132: 422–8.

    Article  PubMed  CAS  Google Scholar 

  43. Terzolo M, Osella G, Ali A, et al. Different patterns of steroid secretion in patients with adrenal incidentaloma. J Clin Endocrinol Met 1996, 81: 740–4.

    CAS  Google Scholar 

  44. Bernini GP, Brogi G, Vivaldi MS, et al. 17-Hydroxyprogesterone response to ACTH in bilateral and monolateral adrenal incidentalomas. J Endocrinol Invest 1996, 19: 745–52.

    PubMed  CAS  Google Scholar 

  45. Kjellman M, Holst M, Backdahl M, Larsson C, Farnebo LO, Wedell A. No overrepresentation of congenital adrenal hyperplasia in patients with adrenocortical tumours. Clin Endocrinol (Oxf) 1999, 50: 343–6.

    Article  CAS  Google Scholar 

  46. Patocs A, Toth M, Barta C, et al. Hormonal evaluation and mutation screening for steroid 21-hydroxylase deficiency in patients with unilateral and bilateral adrenal incidentalomas. Eur J Endocrinol 2002, 147: 349–55.

    Article  PubMed  CAS  Google Scholar 

  47. Baumgartner-Parzer SM, Pauschenwein S, Waldhäusl W, Pölzler K, Nowotny P, Vierhapper H. Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin Endocrinol (Oxf) 2002, 56: 811–6.

    Article  CAS  Google Scholar 

  48. Barzon L, Boscaro M. Diagnosis and management of adrenal incidentalomas. J Urol 2000, 163: 398–407.

    Article  PubMed  CAS  Google Scholar 

  49. Reincke M, Peter M, Sippell WG, Allolio B. Impairment of 11β-hydroxylase but not 21-hydroxylase in adrenal ‘incidentalomas’. Eur J Endocrinol 1997, 136: 196–200.

    Article  PubMed  CAS  Google Scholar 

  50. Dall’Asta C, Barbetta L, Libe R, Passini E, Ambrosi B. Coexistence of 21-hydroxylase and 11 beta-hydroxylase deficiency in adrenal incidentalomas and in subclinical Cushing’s syndrome. Horm Res 2002, 57: 192–6.

    Article  PubMed  Google Scholar 

  51. Toth M, Racz K, Adleff V, et al. Comparative analysis of plasma 17-hydroxyprogesterone and cortisol responses to ACTH in patients with various adrenal tumors before and after unilateral adrenalectomy. J Endocrinol Invest 2000, 23: 287–94.

    Article  PubMed  CAS  Google Scholar 

  52. Sadoul JL, Kézachian B, Altare S, Hadjali Y, Canivet B. Apparent activities of 21-hydroxylase, 17alpha-hydroxylase and 17, 20-lyase are impaired in adrenal incidentalomas. Eur J Endocrinol 1999, 141: 238–45.

    Article  PubMed  CAS  Google Scholar 

  53. Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B. Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab 1997, 82: 3054–8.

    PubMed  CAS  Google Scholar 

  54. Simonian MH, Gill GN. Regulation of the fetal human adrenal cortex: effects of adrenocorticotropin on growth and function of monolayer cultures of fetal and definitive zone cells. Endocrinology 1981, 108: 1769–79.

    Article  PubMed  CAS  Google Scholar 

  55. Kimura E, Sonobe MH, Armelin MC, Armelin HA. Induction of FOS and JUN proteins by adrenocorticotropin and phorbol ester but not by 3′,5′-cyclic adenosine monophosphate derivatives. Mol Endocrinol 1993, 7: 1463–71.

    PubMed  CAS  Google Scholar 

  56. Zwermann O, Schulte DM, Reincke M, Beuschlein F. ACTH 1–24 inhibits proliferation of adrenocortical tumors in vivo. Eur J Endocrinol 2005, 153: 435–44.

    Article  PubMed  CAS  Google Scholar 

  57. Clark AJ, Weber A. Adrenocorticotropin insensitivity syndromes. Endocr Rev 1998, 19: 828–43.

    Article  PubMed  CAS  Google Scholar 

  58. Lowry PJ, Silas L, McLean C, Linton EA, Estiva riz FE. Pro-gammamelanocyte-stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature 1983, 306: 70–3.

    Article  PubMed  CAS  Google Scholar 

  59. Willenberg HS, Haase M, Papewalis C, Schott M, Scherbaum WA, Bornstein SR. Corticotropin-releasing hormone receptor expression on normal and tumorous human adrenocortical cells. Neuroendocrinology 2005, 82: 274–81.

    Article  PubMed  CAS  Google Scholar 

  60. Bornstein SR, Ehrhart M, Scherbaum WA, Pfeiffer EF. Adrenocortical atrophy of hypophysectomized rats can be reduced by corticotropin-releasing hormone (CRH). Cell Tissue Res 1990, 260: 161–6.

    Article  PubMed  CAS  Google Scholar 

  61. Knochenhauer ES, Cortet-Rudelli C, Cunnigham RD, Conway-Myers BA, Dewailly D, Azziz R. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J Clin Endocrinol Metab 1997, 82: 479–85.

    PubMed  CAS  Google Scholar 

  62. Montanaro D, Maggiolini M, Recchia AG, et al. Antiestrogens upregulate estrogen receptor β expression and inhibit human adrenocortical cell proliferation. J Mol Endocrinol 2005, 35: 245–56.

    Article  PubMed  CAS  Google Scholar 

  63. Lefebvre H, Duparc C, Chartrel N,et al. Intraadrenal adrenocorticotropin production in a case of bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2003, 88: 3035–42.

    Article  PubMed  CAS  Google Scholar 

  64. Barzon L, Scaroni C, Sonino N, Fallo F, Paoletta A, Boscaro M. Risk factors and long-term follow-up of adrenal incidentalomas. J Clin Endocrinol Metab 1999, 84: 520–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fallo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzon, L., Maffei, P., Sonino, N. et al. The role of 21-hydroxylase in the pathogenesis of adrenal masses: Review of the literature and focus on our own experience. J Endocrinol Invest 30, 615–623 (2007). https://doi.org/10.1007/BF03346358

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346358

Key-words

Navigation