Skip to main content

Advertisement

Log in

Neuroendocrine regulation of eating behavior

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The dual center hypothesis in the central control of energy balance originates from the first observations performed more than 5 decades ago with brain lesioning and stimulation experiments. On the basis of these studies the “satiety center” was located in the ventromedial hypothalamic nucleus, since lesions of this region caused overfeeding and excessive weight gain, while its electrical stimulation suppressed eating. On the contrary, lesioning or stimulation of the lateral hypothalamus elicited the opposite set of responses, thus leading to the conclusion that this area represented the “feeding center”. The subsequent expansion of our knowledge of specific neuronal subpopulations involved in energy homeostasis has replaced the notion of specific “centers” controlling energy balance with that of discrete neuronal pathways fully integrated in a more complex neuronal network. The advancement of our knowledge on the anatomical structure and the function of the hypothalamic regions reveals the great complexity of this system. Given the aim of this review, we will focus on the major structures involved in the control of energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskin D.G., Breininger J.F., Schwartz M.W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999, 48: 828–833.

    CAS  PubMed  Google Scholar 

  2. Cheung C.C., Clifton D.K., Steiner R.A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997, 138: 4489–4492.

    CAS  PubMed  Google Scholar 

  3. Cintra A., Bortolotti F. Presence of strong glucocorticoid receptor immunoreactivity within hypothalamic and hypophyseal cells containing pro-opiomelanocortic peptides. Brain. Res. 1992, 577: 127–133.

    CAS  PubMed  Google Scholar 

  4. Hisano S., Kagotani Y., Tsuruo Y., Daikoku S., Chihara K., Whitnall M.H. Localization of glucocorticoid receptor in neuropeptide Y-containing neurons in the arcuate nucleus of the rat hypothalamus. Neurosci. Lett. 1988, 95: 13–18.

    CAS  PubMed  Google Scholar 

  5. Jirikowski G.F., Merchenthaler I., Rieger G.E., Stumpf W.E. Estradiol target sites immunoreactive for beta-endorphin in the arcuate nucleus of rat and mouse hypothalamus. Neurosci. Lett. 1986, 65: 121–126.

    CAS  PubMed  Google Scholar 

  6. Fox S.R., Harlan R.E., Shivers B.D., Pfaff D.W. Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary. Neuroendocrinology 1990, 51: 276–283.

    CAS  PubMed  Google Scholar 

  7. Kamegai J., Minami S., Sugihara H., Hasegawa O., Higuchi H., Wakabayashi I. Growth hormone receptor gene is expressed in neuropeptide Y neurons in hypothalamic arcuate nucleus of rats. Endocrinology 1996, 137: 2109–2112.

    CAS  PubMed  Google Scholar 

  8. Broadwell R.D., Brightman M.W. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J. Comp. Neurol. 1976, 166: 257–283.

    CAS  PubMed  Google Scholar 

  9. Muroya S., Yada T., Shioda S., Takigawa M. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci. Lett. 1999, 264: 113–116.

    CAS  PubMed  Google Scholar 

  10. Dunn-Meynell A.A., Routh V.H., McArdle J.J., Levin B.E. Low affinity sulfonylurea binding sites reside on neuronal cell bodies in the brain. Brain. Res. 1997, 745: 1–9.

    CAS  PubMed  Google Scholar 

  11. Williams G., Bing C., Cai X.J., Harrold J.A., King P.J., Liu X.H. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 2001, 74: 683–701.

    CAS  PubMed  Google Scholar 

  12. Obici S., Feng Z., Morgan K., Stein D., Karkanias G., Rosseti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002, 51: 271–275.

    CAS  PubMed  Google Scholar 

  13. Shimokawa T., Kumar M.V., Lane M.D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl. Acad. Sci. USA 2002, 99: 66–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hahn T.M., Breininger J.F., Baskin D.G., Schwartz M.W. Coexpression of AgRP and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1998, 1: 271–272.

    CAS  PubMed  Google Scholar 

  15. Broberger C., Johansen J., Johasson C., Schalling M., Hokfelt T. The neuropeptide Y/agouti gene-related protein (AgRP) brain circuitry in normal, anorectic and monosodium glutamate-treated mice. Proc. Natl. Acad. Sci. USA 1998, 95: 15043–15048.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Khachaturian H., Lewis M.E., Haber S.N., Akil H., Watson S.J. Proopiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain. Res. Bull. 1984, 13: 785–800.

    CAS  PubMed  Google Scholar 

  17. Elias C.F., Lee C., Kelly J. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998, 21: 1375–1385.

    CAS  PubMed  Google Scholar 

  18. Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci. USA 1982, 79: 5485–5489.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Allen Y.S., Adrian T.E., Allen J.M. et al. Neuropeptide Y distribution in the rat brain. Science 1983, 221: 877–879.

    CAS  PubMed  Google Scholar 

  20. Bai F.L., Yamano M., Shiotani Y. et al. An arcuate-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res. 1985, 331: 172–175.

    CAS  PubMed  Google Scholar 

  21. Smith S.M., Lactation alters neuropeptide-Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat. Endocrinology 1993, 133: 1258–1265.

    CAS  PubMed  Google Scholar 

  22. Sawchenko P.E., Swanson L.W., Grzanna R., Howe P.R.C., Bloom S.R., Polak J.M. Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J. Comp. Neurol. 1985, 241: 138–153.

    CAS  PubMed  Google Scholar 

  23. Broberger C., Landry M., Wong H., Walsh J.N., Hokfelt T. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 1997, 66: 393–408.

    CAS  PubMed  Google Scholar 

  24. Schwartz M.W., Sipols A.J., Marks J.L. et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 1992, 130: 3608–3616.

    CAS  PubMed  Google Scholar 

  25. Inui A. Neuropeptide Y feeding receptors: are multiple subtypes involved? TIPS 1999, 20: 43–46.

    CAS  PubMed  Google Scholar 

  26. Herzog H., Hort Y.J., Ball H.J., Hayes G., Shine J., Selbie L.A. Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc. Natl. Acad. Sci. USA 1992, 89: 5794–5798.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Larhammar D., Blomqvist A.G., Yee F., Jazin E., Yoo H., Wahlestedt C. Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. J. Biol. Chem. 1992, 267: 10935–10938.

    CAS  PubMed  Google Scholar 

  28. Grundemar L., Krstenansky J.L., Håkanson R. Activation of neuropeptide Y1 and neuropeptide Y2 receptors by substituted and truncated neuropeptide Y analogs: identification of signal epitopes. Eur. J. Pharmacol. 1993, 232: 271–278.

    CAS  PubMed  Google Scholar 

  29. Gehlert D.R., Gackenheimer S., Millington W.R., Manning A.B., Chronwall B.M. Localization of neuropeptide Y immunoreactivity and 125I-PYY binding sites in the human pituitary. Peptides 1994, 15: 651–656.

    CAS  PubMed  Google Scholar 

  30. Bard J.A., Walker M.W., Branchek T.A., Weinshank R.L. Cloning and functional-expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J. Biol. Chem. 1995, 270: 26762–26765.

    CAS  PubMed  Google Scholar 

  31. Gerald C., Walker M.W., Vaysse P.J., He C., Branchek T.A., Weinshank R.L. Expression cloning and pharmacological characterization of a human hippocampal neuropeptide Y/peptide YY Y2, receptor subtype. J. Biol. Chem. 1995, 270: 26758–26761.

    CAS  PubMed  Google Scholar 

  32. Gerald C., Walker M.W., Criscione L. et al. A receptor subtype involved in neuropeptide-Y-induced food intake see comments. Nature 1996, 382: 168–171.

    CAS  PubMed  Google Scholar 

  33. Leibowitz S.F., Alexander J.T. Analysis of neuropeptide Yinduced feeding: dissociation of Y1 and Y2 receptor effects on natural meal patterns. Peptides 1991, 12: 1251–1260.

    CAS  PubMed  Google Scholar 

  34. Stanley B.G., Daniel D.R., Chin A.S., Lebowitz S.F. Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides 1985, 6: 1205–1211.

    CAS  PubMed  Google Scholar 

  35. Cheng X., Broberger C., Tong Y., Yongtao X., Ju G., Zhang X., Hökfelt T. Regulation of expression of neuropeptide Y Y1 and Y2 receptors in the arcuate nucleus of fasted rats. Brain Res. 1998, 792: 89–96.

    CAS  PubMed  Google Scholar 

  36. Oomura Y., Ooyama H., Sugimori M., Nakamura T., Yamada Y. Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature 1974, 247: 284–286.

    CAS  PubMed  Google Scholar 

  37. Spanswick D., Smith M.A., Groppi V.E., Logan S.D., Ashford M.L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997, 390: 521–525.

    CAS  PubMed  Google Scholar 

  38. Schaffhauser A.O., Stricker-Krongrad A., Brunner L. et al. Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides. Diabetes 1997, 46: 1792–1798.

    CAS  PubMed  Google Scholar 

  39. Hofbauer K.G., Schaffhauser A.O., Batzl-Hartmann C. et al. Antisense oligonucleotides targeted against the NPY Y5 receptor and selective Y5 receptor antagonist inhibit food intake in rodents. Regul. Pept. 1997, 71: 211–212.

    Google Scholar 

  40. Schaffhauser A.O., Whitebread S., Haener R., Hofbauer K.G., Stricker-Krongrad A. Neuropeptide Y Y1 receptor antisense oligodeoxynucleotides enhance food intake in energy-deprived rats. Regul. Pept. 1998, 75: 417–423.

    PubMed  Google Scholar 

  41. Widdowson P.S., Upton R., Henderson L., Buckingham R., Wilson S., Williams G. Reciprocal regional changes in brain NPY receptor density during dietary restriction and dietary-induced obesity in the rat. Brain Res. 1997, 774: 1–10.

    CAS  PubMed  Google Scholar 

  42. Kanatani A., Fukami T., Fukuroda T. et al. Y5 receptors are not involved in physiologically relevant feeding in rodents. Regul. Pept. 1997, 71: 212–213.

    Google Scholar 

  43. Flynn M.C., Turrin N.P., Plata-Salaman C.R., Ffrench-Mullen J.M.H. Feeding responses to neuropeptide Y-related compounds in rats treated with Y5 receptor antisense or sense phosphothio-oligonucleotides. Physiol. Behav. 1999, 66: 881–884.

    CAS  PubMed  Google Scholar 

  44. Naveilhan P., Hassani H., Canals J.M. et al. Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat. Med. 1999, 5: 1188–1193.

    CAS  PubMed  Google Scholar 

  45. King P.J., Widdowson P.S., Doods H.N., Williams G. Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J. Neurochem. 1999, 73: 641–646.

    CAS  PubMed  Google Scholar 

  46. Sahu A., Karla S.P. Neuropeptidergic regulation of feeding behavior, neuropeptide Y. Trends Endocrinol. Metabol. 1993, 4: 217–224.

    CAS  Google Scholar 

  47. Frankish H.M., Dryden S., Hopkins D., Wang Q., Williams G. Neuropeptide Y, the hypothalamus, and diabetes: insights into the central control of metabolism. Peptides 1995, 16: 757–771.

    CAS  PubMed  Google Scholar 

  48. Kalra S.P., Dube M.G., Sahu A., Phelps C.P., Kalra P.S. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl. Acad. Sci. USA 1991, 88: 10931–10935.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Sahu A., Sninsky C.A., Phelps C.P., Dube M.G., Kalra P.S., Kalra S.P. Neuropeptide Y release from the paraventricular nucleus increases in association with hyperphagia in streptozotocin-induced diabetic rats. Endocrinology 1992, 131: 2979–2985.

    CAS  PubMed  Google Scholar 

  50. Kalra S.P., Dube M.G., Fournier A., Kalra P.S. Structurefunction analysis of stimulation of food intake by neuropeptide Y: effects of receptor agonists. Physiol. Behav. 1991, 50: 5–9.

    CAS  PubMed  Google Scholar 

  51. Zarjevski N., Cusin I., Vettor R., Rohner-Jeanrenaud F., Jeanrenaud B. Chronic intracerebroventricular neuropeptide- Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993, 133: 1753–1758

    CAS  PubMed  Google Scholar 

  52. Zarjevski N., Cusin I., Vettor R., Rohner-Jeanrenaud F., Jeanrenaud B. Intracerebroventricular administration of neuropeptide Y to normal rats has divergent effects on glucose utilization by adipose tissue and skeletal muscle. Diabetes 1994, 43: 764–769

    CAS  PubMed  Google Scholar 

  53. Vettor R., Zarjevski N., Cusin I., Rohner-Jeanrenaud F., Jeanrenaud B. Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats. Diabetologia 1994, 37: 1202–1208.

    CAS  PubMed  Google Scholar 

  54. Sainsbury A., Cusin I., Doyle P., Rohner-Jeanrenaud F., Jeanrenaud B. Intracerebroventricular administration of neuropeptide Y to normal rats increases obese gene expression in white adipose tissue. Diabetologia 1996, 39: 353–356.

    CAS  PubMed  Google Scholar 

  55. Mercer J.G., Hoggard N., Williams L.M. et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in ARC of mouse hypothalamus. J. Neuroendocrinol. 1996, 8: 733–775.

    CAS  PubMed  Google Scholar 

  56. Baskin D.G., Schwartz M.W., Seeley R.J. et al. Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mNRA in the arcuate nucleus. J. Histochem. Cytochem. 47: 353–362.

  57. Wang Q., Bing C., Al-Barazanji K. et al. Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat. Diabetes 1997, 46: 335–341.

    CAS  PubMed  Google Scholar 

  58. Wang J., Leibowitz K.L. Central insulin inhibits hypothalamic galanin an neuropeptide Y gene expression and peptide release in intact rats. Brain Res. 1997, 777: 231–236.

    CAS  PubMed  Google Scholar 

  59. Bray G.A., York D.A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 1979, 59: 719–809.

    CAS  PubMed  Google Scholar 

  60. Chen H., Charlat O., Tartaglia L.A. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996, 84: 491–495.

    CAS  PubMed  Google Scholar 

  61. Iida M., Murakami T., Ishida K., Mizuno A., Kuwajima M., Shima K. Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem. Biophys. Res. Commun. 1996, 222: 19–26.

    CAS  PubMed  Google Scholar 

  62. Stanley B.G., Daniel D.R., Chin A.S., Lebowitz S.F. Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides 1985, 6: 1205–1211.

    CAS  PubMed  Google Scholar 

  63. Schwartz M.W., Sipols A.J., Marks J.L. et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 1992, 130: 3608–3616.

    CAS  PubMed  Google Scholar 

  64. Hollopeter G., Erickson J.C., Seeley R.J., Marsh D.J., Palmiter R.D. Response of neuropeptide Y-deficient mice to feeding effectors. Regulat. Pept. 1998, 785: 383–389.

    Google Scholar 

  65. Marsh D.J., Miura Y., Yagaloff K.A., Schwartz M.W., Barsh G.S., Palmiter R.D. Effects of neuropeptide Y deficiency on hypothalamic agouti-related expression and responsiveness to melanocortin analogues. Brain Res. 1999, 848: 66–77.

    CAS  PubMed  Google Scholar 

  66. Tatemoto K., Carlquist M., Mutt V. Neuropeptide Y-a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982, 296: 659–660.

    CAS  PubMed  Google Scholar 

  67. Pedersen-Bjergaard U., Host U., Kelbaek H. et al. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand. J. Clin. Lab. Invest. 1996, 56: 497–503.

    CAS  PubMed  Google Scholar 

  68. Pieribone V.A., Brodin L., Friberg K. et al. Differential expression of mRNAs for neuropeptide Y-related peptides in rat nervous tissues: possible evolutionary conservation. J. Neurosci. 1992, 12: 3361–3371.

    CAS  PubMed  Google Scholar 

  69. Jazin E.E., Zhang X., Soderstrom S. et al. Expression of peptide YY and mRNA for the NPY/PYY receptor of the Y1 subtype in dorsal root ganglia during rat embryogenesis. Brain Res. Dev. Brain Res. 1993, 76: 105–113.

    CAS  PubMed  Google Scholar 

  70. Keire D.A., Mannon P., Kobayashi M., Walsh J.H., Solomon T.E., Reeve J.R.Jr. Primary structures of PYY, [Pro34] PYY and PYY-(3–36) confer different conformations and receptor selectivity. Am. J. Physiol. 2000, 279: G126–G131.

    CAS  Google Scholar 

  71. Broberger C., Landry M., Wong H., Walsh J.N., Hökfelt T. Subtypes of Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 1997, 66: 393–408.

    CAS  PubMed  Google Scholar 

  72. Kalra S.P., Dube M.G., Pu S., Xu B., Horvath T.L., Kalra P.S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 1999, 20: 68–100.

    CAS  PubMed  Google Scholar 

  73. Batterham R.L., Cowley M.A., Small C.J. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002, 418: 650–654.

    CAS  PubMed  Google Scholar 

  74. Cowley M.A., Smart J.L., Rubinstein M. et al. Leptin activates the anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411: 480–484.

    CAS  PubMed  Google Scholar 

  75. Hagan M.M., Rushing P.A., Pritchard L.M. et al. Long-term orexigenic effect of AgRP-(82–132) involve mechanisms other than melanocortin receptor blockade. Am. J. Physiol. 2000, 279: R47–R52.

    CAS  Google Scholar 

  76. Elmquist J.K., Elias C.F., Saper C.B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999, 22: 221–232.

    CAS  PubMed  Google Scholar 

  77. Ollman M.M., Wilson B.D., Yang Y.K. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278: 135–138.

    Google Scholar 

  78. Schwartz M.W., Woods S.C., Porte Jr.D., Seeley R.J., Baskin D.G. Central nervous system control of food intake. Nature 2000, 404: 661–671.

    CAS  PubMed  Google Scholar 

  79. Fong T.M., Mao C., MacNeil T. et al. ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem. Biophys. Res. Commun. 1997, 237: 629–631.

    CAS  PubMed  Google Scholar 

  80. Cone R.D., Lu D., Koppula S. et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog. Horm. Res. 1996, 51: 287–317.

    CAS  PubMed  Google Scholar 

  81. Benoit S.C., Schwartz M.W., Lachey J.L. et al. A novel selective melanocortin-4 receptor agonist reduces food intake in rats and mice without producing aversive consequences. J. Neurosci. 2000, 20: 3442–3448.

    CAS  PubMed  Google Scholar 

  82. Thiele T.E., van Dijk G., Yagaloff K.A. et al. Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion. Am. J. Physiol. 1998, 274: R248–R254.

    CAS  PubMed  Google Scholar 

  83. Yaswen L., Diehl N., Brennan M.B., Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 1999, 5: 1066–1070.

    CAS  PubMed  Google Scholar 

  84. Huszar D., Lynch C.A., Fairchild-Huntress V. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997, 88: 131–141.

    CAS  PubMed  Google Scholar 

  85. Chen A.S., Marsh D.J., Trumbauer M.E. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 2000, 26: 97–102.

    CAS  PubMed  Google Scholar 

  86. Krude H., Biebermann H., Luck W., Horn R., Brabant G., Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 1998, 19: 155–157.

    CAS  PubMed  Google Scholar 

  87. Vaisse C., Clement K., Durand E., Hercberg S., Guy-Grand B., Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 2000, 106: 253–262

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lee Y.S., Poh L.K., Loke K.Y. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J. Clin. Endocrinol. Metab. 2002, 87: 1423–1426.

    CAS  PubMed  Google Scholar 

  89. Koylu E.O., Couceyro P.R., Lambert P.D., Ling N.C., DeSouza E.B., Kuhar M.J. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocr. 1997, 9: 823–833.

    CAS  Google Scholar 

  90. Kristensen P., Judge M.E., Thim L. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998, 393: 72–76.

    CAS  PubMed  Google Scholar 

  91. Abbott C.R., Rossi M., Wren A.M. et al. Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology 2001, 142: 3457–3463.

    CAS  PubMed  Google Scholar 

  92. Sipols A.J., Baskin D.G., Schwartz M.W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995, 44: 147–151.

    CAS  PubMed  Google Scholar 

  93. Baskin D.G., Wilcox B.J., Figlewicz D.P., Dorsa D.M. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988, 11: 107–111.

    CAS  PubMed  Google Scholar 

  94. Schwartz M.W., Seeley R.J., Woods S.C., Weigle D.S., Campfield L.A., Burn P., Baskin D.G. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997, 46: 2119–2123.

    CAS  PubMed  Google Scholar 

  95. Thornton J.E., Cheung C.C., Clifton D.K., Steiner R.A. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 1997, 138: 5063–5066.

    CAS  PubMed  Google Scholar 

  96. Broberger C., Visser T.J., Kuhar M.J., Hokfelt T. Neuropeptide Y innervations and Neuropeptide-Y-Y1-receptorexpressing neurons in the paraventricular hypothalamic nucleus of the mouse. Neurondocrinology 1999, 70: 295–305.

    CAS  Google Scholar 

  97. Fekete C., Legradi G., Mihaly E. et al. Alpha-Melanocytestimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J. Neurosci. 2000, 20: 1550–1558.

    CAS  PubMed  Google Scholar 

  98. Fekete C., Mihaly E., Luo L.G. et al. Association of cocaineand amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J. Neurosci. 2000, 20: 9224–9234.

    CAS  PubMed  Google Scholar 

  99. Legradi G., Lechan R.M. The arcuate nucleus is the major source for neuropeptide Y-innervation of thyrotropinreleasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 1998, 139: 3262–3270.

    CAS  PubMed  Google Scholar 

  100. Liposits Z., Sievers L., Paull W.K. Neuropeptide-Y and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. An immunocytochemical analysis at the light and electron microscopic levels. Histochemistry 1988, 88: 227–234.

    CAS  PubMed  Google Scholar 

  101. Venihaki M., Majzoub J.A. Animal models of CRH deficiency. Front. Neuroendocrinol. 1999, 20: 122–145.

    CAS  Google Scholar 

  102. Schwartz M.W., Woods S.C., Porte D.Jr., Seeley R.J., Baskin D.G. Central nervous system control of food intake. Nature 2000, 404: 661–671.

    CAS  PubMed  Google Scholar 

  103. Richard D., Huang Q., Timofeeva E. The corticotropinreleasing hormone system in the regulation of energy balance in obesity. Int. J. Obes. 2000, 24 (Suppl. 2): S36–S39.

    CAS  Google Scholar 

  104. Smagin G.N., Howell L.A., Ryan D.H., De Souza E.B., Harris R.B. The role of CRF2 receptors in corticotropin-releasing factor- and urocortin-induced anorexia. Neuroreport 1998, 9: 1601–1606.

    CAS  PubMed  Google Scholar 

  105. Beck B. KO’s and organisation of peptidergic feeding behavior mechanisms. Neurosci. Biobehav. Rev. 2001, 25: 143–158.

    CAS  PubMed  Google Scholar 

  106. Arase K., York D.A., Shimazu H., Shargill M., Bray G.A. Effects of corticotrophin releasing factor on food intake and brown adipose tissue thermogenesis. Am. J. Physiol. 1998, 55: E225–E259.

    Google Scholar 

  107. Spina M., Merlo-Pich E., Chan R.K. et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 1996, 273: 1561–1564.

    CAS  PubMed  Google Scholar 

  108. Hsu S.Y., Hsueh A.J. Human stresscopin and stresscopinrelated peptide are selective ligands for the type 2 corticotropin- releasing hormone receptor. Nature Med. 2001, 7: 605–611.

    CAS  PubMed  Google Scholar 

  109. Li C., Vaughan J., Sawchenko P.E., Vale W.W. Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J. Neurosci. 2002, 22: 991–1001.

    CAS  PubMed  Google Scholar 

  110. Inui A. Transgenic approach to the study of body weight regulation. Pharmacol. Rev. 2000, 52: 35–61.

    CAS  PubMed  Google Scholar 

  111. Härfstrand A., Fuxe K., Agnati L.F. et al. Studies on neuropeptide Y-catecholamine interactions in the hypothalamus and in the forebrain of the male rat. Relationship to neuroendocrine function. Neurochem. Int. 1986, 8: 355–1376.

    PubMed  Google Scholar 

  112. Broberger C., De Lecea L., Sutcliffe J.G., Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormoneexpressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 1998, 402: 460–474.

    CAS  PubMed  Google Scholar 

  113. Qu D., Ludwig D.S., Gammeltoft S. et al. A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature 1996, 380: 243–247.

    CAS  PubMed  Google Scholar 

  114. Shimada M., Tritos N.A., Lowell B.B., Flier J.S., Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998, 396 (6712): 670–674.

    CAS  PubMed  Google Scholar 

  115. Ludwig D.S., Tritos N.A., Mastaitis J.W. et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 2001, 107: 379–386.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Saito Y., Nothacker H.P., Wang Z., Lin S.H., Leslie F., Civelli O. Molecular characterization of the melanin-concentrating- hormone receptor. Nature 1999, 400: 265–269

    CAS  PubMed  Google Scholar 

  117. Chambers J., Ames R.S., Bergsma D. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999, 400: 261–265.

    CAS  PubMed  Google Scholar 

  118. Sakurai T., Amemiya A., Ishii M. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92: 573–585.

    CAS  PubMed  Google Scholar 

  119. Yamanaka A., Sakurai T., Katsumoto T., Yanagisawa M., Goto K. Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res. 1999, 849: 248–252.

    CAS  PubMed  Google Scholar 

  120. Hara J., Beuckmann C.T., Nambu T. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30: 345–354.

    CAS  PubMed  Google Scholar 

  121. Wang J., Osaka T., Inoue S. Energy expenditure by intracerebroventricular administration of orexin to anesthetized rats. Neurosci. Lett. 2001, 315: 49–52.

    CAS  PubMed  Google Scholar 

  122. Chemelli R.M., Willie J.T., Sinton C.M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999, 98: 437–451.

    CAS  PubMed  Google Scholar 

  123. Griffond B., Risold P.Y., Jacquemard C., Colard C., Fellmann D. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci. Lett. 1999, 262: 77–80.

    CAS  PubMed  Google Scholar 

  124. Cai X.J., Widdowson P.S., Harold J. et al. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999, 48: 2132–2137.

    CAS  PubMed  Google Scholar 

  125. Risold P.Y., Thompson R.H., Swanson L.W. The structural organization of connections between hypothalamus and cerebral cortex. Brain Res. Rev. 1997, 24: 197–254.

    CAS  PubMed  Google Scholar 

  126. Bittencourt J.C., Presse F., Arias C. et al. The melanin-concentrating hormone system of the rat brain: an immunoand hybridization histochemical characterization. J. Comp. Neurol. 1992, 319: 218–245.

    CAS  PubMed  Google Scholar 

  127. Broberger C., Hokfelt T. Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiol. Behav. 2001, 74: 669–682.

    CAS  PubMed  Google Scholar 

  128. Skofitsch G., Jacobowitz D.M. Immunoistochemical mapping of galanin-like neurons in the rat nervous system. Peptides 1985, 6: 509–546.

    CAS  PubMed  Google Scholar 

  129. Lopez F.J., Liposits Z., Merchenthaler I. Evidence for a negative ultrashort loop feedback regulating galanin release from the arcuate nucleus-median eminence functional unit. Endocrinology 1992, 130: 1499–1507.

    CAS  PubMed  Google Scholar 

  130. Horvath T.L., Naftolin F., Leranth C., Sahu A., Kalra S.P. Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus. Endocrinology 1996, 137: 3069–3077.

    CAS  PubMed  Google Scholar 

  131. Smith B.K., York D.A., Bray G.A. Chronic cerebroventricular does not induce sustained hyperphagia or obesity. Peptides 1994, 15: 1267–1272.

    CAS  PubMed  Google Scholar 

  132. Wynick D., Small S.J., Bacon A. et al. Galanin regulates prolactin release and lactotroph proliferation. Proc. Natl. Acad. Sci. USA 1994, 95: 12671–12676.

    Google Scholar 

  133. Stratford T.R., Kelley A.E. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci. 1997, 19: 121–131.

    Google Scholar 

  134. Berridge K.C., Pecina S. Benzodiazepines, appetite, and taste palatability. Neurosci. Biobehav. Rev. 1995, 37: 735–740.

    Google Scholar 

  135. Dickson P.R., Vaccarino F.J. Characterization of feeding behavior induced by central injection of GRF. Am. J. Physiol. 1990, 259: R651–R657.

    CAS  PubMed  Google Scholar 

  136. Salton S.R., Ferri G.L., Hahm S. et al. VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front. Neuroendocrinol. 2000, 21: 199–219.

    CAS  PubMed  Google Scholar 

  137. Hahm S., Mizuno T.M., Wu T.J. et al. Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 1999, 23: 537–548.

    CAS  PubMed  Google Scholar 

  138. Collier G.R., McMillan J.S., Windmill K. et al. Beacon: a novel gene involved in the regulation of energy balance. Diabetes 2000, 49: 1766–1771.

    CAS  PubMed  Google Scholar 

  139. Merali Z., McIntosh J., Anisman H. Role of bombesin-related peptides in the control of food intake. Neuropeptides 1999, 33: 376–386.

    CAS  PubMed  Google Scholar 

  140. Fathi Z., Corjay M.H., Shapira H. et al. BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J. Biol. Chem. 1993, 268: 5979–5984.

    CAS  PubMed  Google Scholar 

  141. Turton M.D., O’Shea D., Gunn I. et al. A role for glucagonlike peptide-1 in the central regulation of feeding. Nature 1996, 379: 69–72.

    CAS  PubMed  Google Scholar 

  142. Kieffer T.J., Habener J.F. The glucagon-like peptides. Endocr. Rev. 1999, 20: 876–913.

    CAS  PubMed  Google Scholar 

  143. Tang-Christensen M., Larsen P.J., Thulesen J., Romer J., Vrang N. The proglucagon-derived peptide, glucagon- like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat. Med. 2000, 6: 802–807.

    CAS  PubMed  Google Scholar 

  144. Barrachina M.D., Martinez V., Wang L., Wei J.Y., Tache Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc. Natl. Acad. Sci. USA 1997, 94: 10455–10460.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Kopin A.S., Mathes W.F., McBride E.W. et al. The cholecystokinin- A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J. Clin. Invest. 1999, 103: 383–391.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Lawrence C.B., Celsi F., Brennand J., Luckman S.M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nature Neurosci. 2000, 3: 645–646.

    CAS  PubMed  Google Scholar 

  147. Roland B.L., Sutton S.W., Wilson S.J. et al. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 1999, 140: 5736–5745.

    CAS  PubMed  Google Scholar 

  148. Seal L.J., Small C.J., Dhillo W.S. et al. PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology 2001, 142: 4236–4243.

    CAS  PubMed  Google Scholar 

  149. Johansson J.O., Jarbe T.U., Henriksson B.G. Acute and subchronic influences of tetrahydrocannabinols on water and food intake, body weight and temperature in rats. Life Sci. 1975, 5: 17–27.

    CAS  Google Scholar 

  150. Gonzalez S., Manzanares J., Berrendero F. et al. Identification of endocannabinoids and cannabinoid CB(1) receptor mRNA in the pituitary gland. Neuroendocrinology 1999, 70: 137–145.

    CAS  PubMed  Google Scholar 

  151. Pagotto U., Marsicano G., Fezza F. et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: first evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J. Clin. Endocr. Metab. 2001, 86: 2687–2696.

    CAS  PubMed  Google Scholar 

  152. Devane W.A., Hanus L., Breuer A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258: 1946–1949.

    CAS  PubMed  Google Scholar 

  153. Williams C.M., Kirkham T.C. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psycopharmacol. 1999, 143: 315–317.

    CAS  Google Scholar 

  154. Arnone M., Maruani J., Chaperone F., Thiebot M.H., Soubrie P., LeFur G. Selective inhibition of sucrose and ethanol intake by SR141716, an antagonist of central cannabinoid (CB1) receptor. Psycopharmacol. 1997, 132: 104–106.

    CAS  Google Scholar 

  155. Simiand J., Keane M., Keane P.E., Soubrie P. SR141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav. Pharmacol. 1998, 9: 179–181.

    CAS  PubMed  Google Scholar 

  156. Marzo V., Goparaju S.K., Wang L. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001, 410: 822–825.

    PubMed  Google Scholar 

  157. Greenberg I., Kuehnle J., Mendelson J.H., Bernstein J.G. Effects of marihuana use on body weight and caloric intake in humans. Psychopharmacol. 1976, 49: 79–84.

    CAS  Google Scholar 

  158. Foltin R.W., Brady J.V., Fischman M.W. Behavioral analysis of marijuana effects on food intake in humans. Pharmacol. Biochem. Behav. 1986, 25: 577–582.

    CAS  PubMed  Google Scholar 

  159. Foltin R.W., Fischman M.W., Byrne M.F. Effects of smoked marijuana on food intake and body weight of humans living in a residential laboratory. Appetite 1988, 11: 1–14.

    CAS  PubMed  Google Scholar 

  160. Mattes R.D., Engelman K., Shaw L.M., Elsohly M.A. Cannabinoids and appetite stimulation. Pharmacol. Biochem. Behav. 1994, 49: 187–195.

    CAS  PubMed  Google Scholar 

  161. Jatoi A., Windschitl H.E., Loprinzi C.L. et al. Dronabinol vs megestrol acetate vs combination therapy for cancer-associated anorexia: A north central cancer treatment group study. J. Clin. Oncol. 2002, 20: 567–573.

    CAS  PubMed  Google Scholar 

  162. Beal J.E., Olson R., Lefkowitz L. et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J. Pain Sympt. Man. 1997, 14: 7–14.

    CAS  Google Scholar 

  163. Gibbs J., Young R.C., Smith G.P. Cholecystokinin deceases food intake in rats. J. Comp. Physiol. Psychol. 1973, 84: 488–495.

    CAS  PubMed  Google Scholar 

  164. Gibbs J., Falasco J.D., McHugh P.R. Cholecystokinin decreases food intake in rhesus monkeys. Am. J. Physiol. 1976, 230: 15–18.

    CAS  PubMed  Google Scholar 

  165. Kissilieff H.R., Pi Sunyer F.X., Thornton J. et al. C-terminal octapeptide of cholecystokinin decreased food intake in man. Am. J. Clin. Nutr. 1981, 34: 154–160.

    Google Scholar 

  166. Ballinger A., McLoughlin L., Medbak S., Clark M. Cholecystokinin is a satiety hormone I humans at physilogical post-prandial plasma concentrations. Clin. Sci. (Lond.) 1995, 89: 375–381.

    CAS  Google Scholar 

  167. West D.B., Fey D., Woods S.C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 1984, 246: R776–R787.

    CAS  PubMed  Google Scholar 

  168. Moran T.H., Ameglio P.J., Schwartz G.J., McHugh P.R. Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK. Am. J. Physiol. 1992, 262: R46–R50.

    CAS  PubMed  Google Scholar 

  169. Moran T.H., McHugh P.R. Gastric and non-gastric mechanisms for satiety action of cholecystokinin. Am. J. Physiol. 1988, 254: R628–R632.

    CAS  PubMed  Google Scholar 

  170. Smith G.P., Jerome C., Cushin B.J., Eterno R., Simnansky K.J. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213: 1036–1037, 1981.

    CAS  PubMed  Google Scholar 

  171. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402: 656–660.

    CAS  PubMed  Google Scholar 

  172. Nakazato M., Murakami N., Date Y. et al. A role for ghrelin in the central regulation of feeding. Nature 2001, 409: 194–198.

    CAS  PubMed  Google Scholar 

  173. Howard A.D., Feighner S.D., Cully D.F. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996, 273: 974–977.

    CAS  PubMed  Google Scholar 

  174. Gnanapavan S., Kola B., Bustin S.A. et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocr. Metab. 2002, 87: 2988–2991.

    CAS  PubMed  Google Scholar 

  175. Ariyasu H., Takaya K., Tagami T. et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocr. Metab. 2001, 86: 4753–4758.

    CAS  PubMed  Google Scholar 

  176. Tschop M., Smiley D.L., Heiman M.L. Ghrelin induces adiposity in rodents. Nature 2000, 407: 908–913.

    CAS  PubMed  Google Scholar 

  177. Tschop M., Wawarta R., Riepl R.L. et al. Post-prandial decrease of circulating human ghrelin levels. J. Endocr. Invest. 2001, 24: 19–21.

    Google Scholar 

  178. Wren A.M., Seal L.J., Cohen M.A. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocr. Metab. 2001, 86: 5992–5995.

    CAS  PubMed  Google Scholar 

  179. Tschop M., Weyer C., Tataranni P.A., Devanarayan V., Ravussin E., Heiman M.L. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001, 50: 707–709.

    CAS  PubMed  Google Scholar 

  180. English P.J., Ghatei M.A., Malik I.A., Bloom S.R., Wilding J.P.H. Food fails to suppress ghrelin levels in obesity. J. Clin. Endocr. Metab. 2002, 87: 2984–2987.

    CAS  PubMed  Google Scholar 

  181. Cummings D.E., Weigle D.S., Frayo R.S. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 2002, 346: 1623–1630.

    PubMed  Google Scholar 

  182. Saad M.F., Bernaba B., Hwu C.M. et al. Insulin regulates plasma ghrelin concentration. J. Clin. Endocr. Metab. 2002, 87: 3997–4000.

    CAS  PubMed  Google Scholar 

  183. Nakagawa E., Nagaya N., Okumura H. et al. Hyperglycaemia suppresses the secretion of ghrelin, a novel growth-hormone-releasing peptide: responses to the intravenous and oral administration of glucose. Clin. Sci. (Lond.) 2002, 103: 325–328.

    CAS  Google Scholar 

  184. Shintani M., Ogawa Y., Ebihara K. et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 2001, 50: 227–232.

    CAS  PubMed  Google Scholar 

  185. Ukkola O., Ravussin E., Jacobson P. et al. Role of ghrelin polymorphisms in obesity based on three different studies. Obes. Res. 2002, 10: 782–791.

    CAS  PubMed  Google Scholar 

  186. Korbonits M., Gueorguiev M., O’Grady E. et al. A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children. J. Clin. Endocr. Metab. 2002, 87: 4005–4008.

    CAS  PubMed  Google Scholar 

  187. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372: 425–432.

    CAS  PubMed  Google Scholar 

  188. Zlokovic B.V., Jovanovic S., Miao W., Samara S., Verma S., Farrell C.L. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology 2000, 141: 1434–1441.

    CAS  PubMed  Google Scholar 

  189. Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature 1998, 395: 763–770.

    CAS  PubMed  Google Scholar 

  190. Ahima R.S., Saper C.B., Flier J.S., Elmquist J.K. Leptin regulation of neuroendocrine systems. Front. Neuroendocr. 2000, 21: 263–307.

    CAS  Google Scholar 

  191. Woods A.J., Stock M.J. Leptin activation in hypothalamus. Nature 1996, 381: 745.

    CAS  PubMed  Google Scholar 

  192. Mantzoros C.S. Leptin and the hypothalamus: neuroendocrine regulation of food intake. Mol. Psychiatry 1999, 4: 8–12.

    CAS  PubMed  Google Scholar 

  193. Mizuno T.M., Kleopoulos S.P., Bergen H.T., Roberts J.L., Priest C.A., Mobbs C.V. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 1998, 47: 294–297.

    CAS  PubMed  Google Scholar 

  194. Ur E., Grossman A., Despres J.P. Obesity results as a consequence of glucocorticoid induced leptin resistance. Horm. Metab. Res. 1996, 28: 744–747.

    CAS  PubMed  Google Scholar 

  195. Tritos N.A., Mantzoros C.S. Leptin: its role in obesity and beyond. Diabetologia 1997, 40: 1371–1379.

    CAS  PubMed  Google Scholar 

  196. Ahima R.S., Prabakaran D., Mantzoros C. et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382: 250–252.

    CAS  PubMed  Google Scholar 

  197. Considine R.V., Considine E.L., Williams C.J. et al. Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity. J. Clin. Invest. 1995, 95: 2986–2988.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Considine R.V., Considine E.L., Williams C.J. et al. Mutation screening and identification of a sequence variation in the human ob gene coding region. Biochem. Biophys. Res. Commun. 1996, 220: 735–759.

    CAS  PubMed  Google Scholar 

  199. Clement K., Garner C., Hager J. et al. Indication for linkage of the human OB gene region with extreme obesity. Diabetes 1996, 45: 687–690.

    CAS  PubMed  Google Scholar 

  200. Strobel A., Issad T., Camoin L., Ozata M., Strosberg A.D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 1998, 18: 213–215.

    CAS  PubMed  Google Scholar 

  201. Schwartz M.W., Peskind E., Raskind M., Boyko E.J., Porte D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med. 1996, 2: 589–593.

    CAS  PubMed  Google Scholar 

  202. Ahima R.S., Osei S.Y. Molecular regulation of eating behavior: new insights and prospects for therapeutic strategies. Trends Mol. Med. 2001, 7: 205–213.

    CAS  PubMed  Google Scholar 

  203. Bjorbaek C., Elmquist J.K., Frantz J.D., Shoelson S.E., Flier J.S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell. 1998, 1: 619–625.

    CAS  PubMed  Google Scholar 

  204. Woods S.C., Lotter E.C., McKay L.D., Porte D.Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979, 282: 503–505.

    CAS  PubMed  Google Scholar 

  205. Sipols A.J., Baskin D.G., Schwartz M.W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995, 44: 147–151.

    CAS  PubMed  Google Scholar 

  206. Cusin I., Dryden S., Wang Q., Rohner-Jeanrenaud F., Jeanrenaud B., Williams C. Effect of sustained physiological hyperinsulinaemia on hypothalamic neuropeptide Y and NPY mRNA levels in the rat. J. Neuroendocr. 1995, 7: 193–197.

    CAS  Google Scholar 

  207. Williams G., Steel J.H., Cardoso H. et al. Increased hypothalamic neuropeptide Y concentrations in diabetic rat. Diabetes 1988, 37: 763–772.

    CAS  PubMed  Google Scholar 

  208. Bruning J.C., Gautam D., Burks D.J. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289: 2122–2125.

    CAS  PubMed  Google Scholar 

  209. Bray G.A., York D.A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 1979, 59: 719–809.

    CAS  PubMed  Google Scholar 

  210. Dallman M.F., Strack A.M., Akana S.F. et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front. Neuroendocrinol. 1993, 14: 303–347.

    CAS  PubMed  Google Scholar 

  211. Bradley R.L., Cheatham B. Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 1999, 48: 272–278.

    CAS  PubMed  Google Scholar 

  212. Newcomer J.W., Selke G., Melson A.K., Gross J., Vogler G.P., Dagogo-Jack S. Dose-dependent cortisol-induced increases in plasma leptin concentration in healthy humans. Arch. Gen. Psychiatry 1998, 55: 995–1000.

    CAS  PubMed  Google Scholar 

  213. Jeanrenaud B., Rohner-Jeanrenaud F. CNS-periphery relationships and body weight homeostasis: influence of the glucocorticoid status. Int. J. Obes. 2000, 24 (Suppl. 2): S74–S76.

    CAS  Google Scholar 

  214. Malendowicz L.K., Macchi C., Nussdorfer G.G., Nowak K.W. Acute effects of recombinant murine leptin on rat pituitaryadrenocortical function. Endocr. Res. 1998, 24: 235–246.

    CAS  PubMed  Google Scholar 

  215. Ainslie D.A., Morris M.J., Wittert G., Turnbull H., Proietto J., Thorburn A.W. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int. J. Obes. 2001, 25: 1680–1688.

    CAS  Google Scholar 

  216. Mystkowski P., Schwartz M.W. Gonadal steroids and energy homeostasis in the leptin era. Nutrition 2000, 16: 937–946.

    CAS  PubMed  Google Scholar 

  217. Plata-Salaman C.R. Cytokine-induced anorexia. Behavioral, cellular, and molecular mechanisms. Ann. N. Y. Acad. Sci. 1998, 856: 160–170.

    CAS  PubMed  Google Scholar 

  218. Fawcett R.L., Waechter A.S., Williams L.B. et al. Tumor necrosis factor-alpha inhibits leptin production in subcutaneous and omental adipocytes from morbidly obese humans. J. Clin. Endocr. Metab. 2000, 85: 530–535.

    CAS  PubMed  Google Scholar 

  219. Langhans W., Hrupka B. Interleukins and tumor necrosis factor as inhibitors of food intake. Neuropeptides 1999, 33: 415–524.

    CAS  PubMed  Google Scholar 

  220. Wallenius V., Wallenius K., Ahren B. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002, 8: 75–79.

    CAS  PubMed  Google Scholar 

  221. Gloaguen I., Costa P., Demartis A. et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl. Acad. Sci. USA, 1997, 94: 6456–6461.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Bjorbaek C., Elmquist J.K., El-Haschimi K. et al. Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 1999, 140: 2035–2043.

    CAS  PubMed  Google Scholar 

  223. Leibowitz S.F., Roossin P., Rosenn M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol. Biochem. Behav. 1984, 21: 801–808.

    CAS  PubMed  Google Scholar 

  224. Oltmans G.A. Norepinephrine and dopamine levels in hypothalamic nuclei of the genetically obese mouse (ob/ob). Brain Res. 1983, 273: 369–373.

    CAS  PubMed  Google Scholar 

  225. Brunetti L., Michelotto B., Orlando G., Vacca M. Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. Eur. J. Pharmacol. 1999, 372: 237–240.

    CAS  PubMed  Google Scholar 

  226. Salamone J.D., Mahan K., Rogers S. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol. Biochem. Behav. 1993, 44: 605–610.

    CAS  PubMed  Google Scholar 

  227. Szczypka M.S., Rainey M.A., Kim D.S. et al. Feeding behavior in dopamine-deficient mice. Proc. Natl. Acad. Sci. USA 1999, 96: 12138–12143.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Pothos E.N., Creese I., Hoebel B.G. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J. Neurosci. 1995, 15: 6640–6650.

    CAS  PubMed  Google Scholar 

  229. Nonogaki K., Strack A.M., Dallman M.F., Tecott L.H. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptorgene. Nat. Med. 1998, 4: 1152–1156.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Vettor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vettor, R., Fabris, R., Pagano, C. et al. Neuroendocrine regulation of eating behavior. J Endocrinol Invest 25, 836–854 (2002). https://doi.org/10.1007/BF03344047

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344047

Key words

Navigation