Skip to main content
Log in

Injectable bisphosphonates in the treatment of postmenopausal osteoporosis

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Osteoporosis is a “silent” disease and the patient has usually no clue of it until the occurrence of a fragility fracture. Prevention requires a continuous daily treatment that could be uncomfortable to the patient. Besides the recently introduced weekly oral schedules, injectable bisphosphonates have often been used as an off-label option to ameliorate compliance. In general, although with different efficiency, almost all injectable bisphosphonates can improve bone mineral density and suppress bone resorption markers. The effect of intravenous infusions of bisphosphonates are, to a large extent, similar to equivalent intramuscular administrations, but doses and dosing intervals represent the critical issues. Pain at the injection site and acute phase reactions are relatively common to intramuscular clodronate and intravenous infusions of nitrogen-containing bisphosphonates, respectively. Under certain circumstances, intermittent treatment with injectable bisphosphonates might represent a feasible alternative when compliance is at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women. The OFELY study. J Bone Miner Res 2000; 15: 1526–36.

    Article  CAS  Google Scholar 

  2. Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995; 10: 1478–87.

    Article  PubMed  CAS  Google Scholar 

  3. Hughes DE, MacDonald BR, Russell RG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 1989; 83: 1930–5.

    Article  PubMed  CAS  Google Scholar 

  4. Sato M, Grasser W, Endo N, et al. Bisphosphonate action. Alendronate localization in rat bone and effect on osteoclast ultra-structure. J Clin Invest 1991; 88: 2095–105.

    CAS  Google Scholar 

  5. Heaney RP. The bone remodeling transient: Implication for the interpretation of clinical studies of bone mass changes. J Bone Miner Res 1994; 9: 1515–23.

    Article  PubMed  CAS  Google Scholar 

  6. Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas P. Comparison of new biochemical markers of bone turnover in postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994; 79: 1693–700.

    Article  PubMed  CAS  Google Scholar 

  7. Chavassieux PM, Arlot ME, Reda C, Weil L, Yates AJ, Meunier PJ. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 1997; 100: 1475–80.

    Article  PubMed  CAS  Google Scholar 

  8. Gatti D, Adami S. New bisphosphonates in the treatment of bone diseases. Drugs Aging 1999; 15: 285–96.

    Article  PubMed  CAS  Google Scholar 

  9. De Groen PC, Lubbe DF, Hirsh LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996; 355: 1016–21.

    Article  Google Scholar 

  10. Schnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging Clin Exp Res 2000; 12: 1–12.

    CAS  Google Scholar 

  11. Gordon MS, Gordon MB. Response of bone mineral density to once-weekly administration of risedronate. Endocr Pract 2002; 8: 202–7.

    Article  PubMed  Google Scholar 

  12. Boyce BF, Fogelman I, Ralston S, et al. Focal osteomalacia due to low-dose diphosphonate therapy in Paget’s disease. Lancet 1984; 1: 821–4.

    Article  PubMed  CAS  Google Scholar 

  13. Plosker GL, Goa KL. Clodronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 1994; 47: 945–82.

    CAS  Google Scholar 

  14. Adami S, Guarrera G, Salvagno G, et al. Sequential treatment of Paget’s disease with human calcitonin and dichloromethylene diphosphonate (C12MDP). Metab Bone Dis Relat Res 1984; 5: 265–7.

    Article  PubMed  CAS  Google Scholar 

  15. Filipponi P, Cristallini S, Policani G, Casciari C, Gregorio F. Paget’s disease of bone: benefits of neridonate as a first treatment and in cases of relapse after clodronate. Bone 1998; 23: 543–8.

    Article  PubMed  CAS  Google Scholar 

  16. Fleisch H. Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 1991; 42: 919–44.

    CAS  Google Scholar 

  17. Kanis JA, McCloskey EV, Paterson AH. Use of diphosphonates in hypercalcaemia due to malignancy. Lancet 1990; 335: 170–1.

    Article  PubMed  CAS  Google Scholar 

  18. Wasan HS. Waxman J. Clodronate for multiple myeloma. Lancet 1993; 341: 175–6.

    Article  CAS  Google Scholar 

  19. Giannini S, D’Angelo A, Sartori L, Passeri G, Dalle Carbonare L, Crepaldi G. Continuous and cyclical clodronate therapies and bone density in postmenopausal bone loss. Obstet Gynecol 1996; 88: 431–6.

    Article  PubMed  CAS  Google Scholar 

  20. McCloskey E, Selby P, de Takats D, et al. Effects of clodronate on vertebral fracture risk in osteoporosis: a 1-year interim analysis. Bone 2001; 28: 310–5.

    Article  PubMed  CAS  Google Scholar 

  21. Filipponi P, Pedetti M, Fedeli L, et al. Cyclical clodronate is effective in preventing postmenopausal bone loss: a comparative study with transcutaneous hormone replacement therapy. J Bone Miner Res 1995; 10: 697–703.

    Article  PubMed  CAS  Google Scholar 

  22. Heikkinen JE, Seiander KS, Laitinen K, Arnala I, Vaananen HK. Short-term intravenous bisphosphonates in prevention of postmenopausal bone loss. J Bone Miner Res 1997; 12: 103–10.

    Article  PubMed  CAS  Google Scholar 

  23. Filipponi P, Cristallini S, Policani G, Schifini MF, Casciari C, Garinei P. Intermittent versus continuous clodronate administration in postmenopausal women with low bone mass. Bone 2000; 26: 269–74.

    Article  PubMed  CAS  Google Scholar 

  24. Rossini M, Braga V, Gatti D, Gerardi D, Zamberlan N, Adami S. Intramuscular clodronate therapy in postmenopausal osteoporosis. Bone 1999; 24: 125–9.

    Article  PubMed  CAS  Google Scholar 

  25. Gnudi S, Lisi L, Fini M, Malavolta N. Effect of intramuscular clodronate on bone mass and metabolism in osteoporotic women. Int J Tissue React 2001; 23: 33–7.

    PubMed  CAS  Google Scholar 

  26. Fitton A, McTavish D. Pamidronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 1991; 41: 289–318.

    CAS  Google Scholar 

  27. Djulbegovic B, Wheatley K, Ross J, et al. Bisphosphonates in multiple myeloma. Cochrane Database Syst Rev 2002; 3: CD003188.

    PubMed  Google Scholar 

  28. Hultbom R, Gundersen S, Ryden S, et al. Efficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res 1999; 19: 3383–92.

    Google Scholar 

  29. Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III. double-blind, comparative trial. Cancer J 2001; 7: 377–87.

    CAS  Google Scholar 

  30. Trombetti A, Arlot M, Thevenon J, Uebelhart B, Meunier PJ. Effect of multiple intravenous pamidronate courses in Paget’s disease of bone. Rev Rheum Engl Ed 1999; 66: 467–6.

    CAS  Google Scholar 

  31. Rauch F, Plotkin H, Zeitlin L, Glorieux FH. Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res 2003; 18: 610–4.

    Article  PubMed  CAS  Google Scholar 

  32. Lane JM. Khan SN. O’Connor WJ. et al. Bisphosphonate therapy in fibrous dysplasia. Clin Orthop 2001; 382: 6–12.

    Article  PubMed  Google Scholar 

  33. Brumsen C, Papapoulos SE, Lips P, et al. Daily oral pamidronate in women and men with osteoporosis: a 3-year randomized placebo-controlled clinical trial with a 2-year open extension. J Bone Miner Res 2002; 17: 1057–64.

    Article  PubMed  CAS  Google Scholar 

  34. Reid IR, Wattie DJ, Evans MC, Gamble GD, Stapleton JP, Cornish J. Continuous therapy with pamidronate, a potent bisphosphonate. in postmenopausal osteoporosis. J Clin Endocrinol Metab 1994; 79: 1595–9.

    Article  CAS  Google Scholar 

  35. Thiebaud D, Burckhardt P, Melchior J, et al. Two years’ effectiveness of intravenous pamidronate (APD) versus oral fluoride for osteoporosis occurring in the postmenopause. Osteoporos Int 1994; 4: 76–83.

    Article  PubMed  CAS  Google Scholar 

  36. Wimalawansa SJ. Intermittent intravenous pamidronate therapy: highly effective treatment for postmenopausal osteoporosis. J Bone Miner Res 2000; 16(Suppl 1): S405 (Abstract).

    Google Scholar 

  37. McCloskey EV, Yates AJ, Beneton MN, Galloway J, Harris S, Kanis JA. Comparative effects of intravenous diphosphonates on calcium and skeletal metabolism in man. Bone 1987; 8(Suppl 1): S35–41.

    PubMed  Google Scholar 

  38. O’Rourke NP, McCloskey EV, Rosini S, Coleman RE, Kanis JA. Treatment of malignant hypercalcaemia with aminohexane bisphosphonate (neridronate). Br J Cancer 1994; 69: 914–7.

    Article  PubMed  Google Scholar 

  39. Delmas PD, Chapuy MC, Edouard C, Meunier PJ. Beneficial effects of aminohexane diphosphonate in patients with Paget’s disease of bone resistant to sodium etidronate. Am J Med 1987; 83: 276–82.

    Article  PubMed  CAS  Google Scholar 

  40. Filipponi P, Cristallini S, Policani G, Casciari C, Gregorio F. Paget’s disease of bone: benefits of neridonate as a first treatment and in cases of relapse after clodronate. Bone 1998; 23: 543–8.

    Article  PubMed  CAS  Google Scholar 

  41. Adami S, Bevilacqua M, Broggini M, et al. Short-term intravenous therapy with Neridronate in Paget’s disease. Clin Exp Rheumatol 2002; 20: 55–8.

    PubMed  CAS  Google Scholar 

  42. Adami S, Gatti D, Colapietro F, et al. Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res 2003; 18: 126–30.

    Article  PubMed  CAS  Google Scholar 

  43. Tobias JH, Laversuch CJ, Chambers TJ, Gallagher AC. Aminohexane bisphosphonate suppresses bone turnover in postmenopausal women more rapidly than oestrogen-gestagen therapy. Br J Rheumatol 1996; 35: 636–41.

    Article  PubMed  CAS  Google Scholar 

  44. Adami S, Braga V, Guidi G, Gatti D, Gerardi D, Fracassi E. Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol. J Bone Miner Res 2000; 15: 599–604.

    Article  PubMed  CAS  Google Scholar 

  45. Braga V, Gatti D, Bakri J, Fracassi E, Adami S. Intravenous cyclical neridronate in the treatment of postmenopausal osteoporosis. Bone 2002; 30(Suppl 3): S31 (Abstract).

    Google Scholar 

  46. Filipponi P, Cristallini S, Frediani B, Policani G, Schifini MF, Garinei P. Two years neridronate increases bone mineral density in postmenopausal women affected by osteoporosis. Bone 2002; 30(Suppl 3): S48 (Abstract).

    Google Scholar 

  47. Dooley M, Balfour JA. Ibandronate. Drugs 1999; 57: 101–8.

    Article  PubMed  CAS  Google Scholar 

  48. Pecherstorfer M, Ludwig H, Schlosser K, Buck S, Huss HJ, Body JJ. Administration of the bisphosphonate ibandronate (BM 21.0955) by intravenous bolus injection. J Bone Miner Res 1996; 11: 587–93.

    Article  PubMed  CAS  Google Scholar 

  49. van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 1996; 98: 698–705.

    Article  PubMed  Google Scholar 

  50. Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 1997; 99: 2509–17.

    Article  PubMed  CAS  Google Scholar 

  51. Ralston SH, Thiebaud D, Herrmann Z, et al. Dose-response study of ibandronate in the treatment of cancer-associated hypercalcaemia. Br J Cancer 1997; 75: 295–300.

    Article  PubMed  CAS  Google Scholar 

  52. Menssen HD, Sakalova A, Fontana A, et al. Effects of long-term intravenous ibandronate therapy on skeletal-related events, survival, and bone resorption markers in patients with advanced multiple myeloma. J Clin Oncol 2002; 20: 2353–9.

    Article  PubMed  CAS  Google Scholar 

  53. Woitge HW, Oberwittler H, Heichel S, Grauer A, Ziegler R, Seibel MJ. Short- and long-term effects of ibandronate treatment on bone turnover in Paget disease of bone. Clin Chem 2000; 46: 684–90.

    PubMed  CAS  Google Scholar 

  54. Ravn P, Clemmesen B, Riis BJ, Christiansen C. The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 1996; 19: 527–33.

    Article  PubMed  CAS  Google Scholar 

  55. Riis BJ, Ise J, von Stein T, Bagger Y, Christiansen C. Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 2001; 16: 1871–8.

    Article  PubMed  CAS  Google Scholar 

  56. Thiebaud D, Burckhardt P, Kriegbaum H, et al. Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med 1997; 103: 298–307.

    Article  PubMed  CAS  Google Scholar 

  57. Recker RR, Stakkestad JA, Felsenbers D, et al. A new treatment paradigm: Quarterly injections of ibandronate reduce the risk of fractures in women with postmenopausal osteoporosis (PMO): Results of a 3-year trial. Osteoporos Int 2000; 11(Suppl 1): S209 (Abstract).

    Google Scholar 

  58. Adami S, Christiansen C, Burdeska A, Coutant K, Mahoney P. Three-monthly 2 mg intravenous ibandronate injections restore bone turnover to premenopausal levels. J Bone Miner Res 2002; 17(Suppl 1): S472 (Abstract).

    Google Scholar 

  59. Burckhardt P, Hüsi B, Thiébaud D, Jacquet A-F. Long term effect of a single dose of intravenous Ibandronate. J Musculoskel Neuron Interact 2003; 3: 77–82.

    CAS  Google Scholar 

  60. Stakkestad JA, Skag A, Nordby A, Burdeska A, Jonkanski I, Meinert R. Three-monthly intravenous ibandronate bolus injections: A novel treatment regimen to prevent postmenopausal bone loss. Osteoporos Int 2002; 13(Suppl 1): S17 (Abstract).

    Google Scholar 

  61. Green JR, Muller K, Jaeggi KA. Preclinical pharmacology of CGP 42446. a new. potent, heterocyclic bisphosphonate compound. J Bone Miner Res 1994; 9: 745–51.

    Article  CAS  Google Scholar 

  62. Widler L, Jaeggi KA, Glatt M, et al. Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem 2002; 45: 3721–38.

    PubMed  CAS  Google Scholar 

  63. Berenson JR, Rosen LS, Howell A, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 2001; 91: 1191–200.

    Article  PubMed  CAS  Google Scholar 

  64. Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III. double-blind, comparative trial. Cancer J 2001; 7: 377–87.

    CAS  Google Scholar 

  65. Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002; 94: 1458–68.

    Article  PubMed  CAS  Google Scholar 

  66. Lipton A, Small E, Saad F, et al. The new bisphosphonate, Zometa (zoledronic acid), decreases skeletal complications in both osteolytic and osteoblastic lesions: a comparison to pamidronate. Cancer Invest 2002; 20(Suppl 2): 45–54.

    Article  PubMed  CAS  Google Scholar 

  67. Chung G. Keen RW. Zoledronate treatment in active Paget’s disease. Ann Rheum Dis 2003; 62: 275–6.

    Article  CAS  Google Scholar 

  68. Reid IR, Brown JP, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 2002; 346: 653–61.

    Article  PubMed  CAS  Google Scholar 

  69. Adami S, Bhalla AK, Dorizzi R, et al. The acute-phase response after bisphosphonate administration. Calcif Tissue Int 1987; 41: 326–31.

    Article  PubMed  CAS  Google Scholar 

  70. Schweitzer DH, Oostendorp-van de Ruit M, Van der Pluijm G, Löwik CWGM, Papapoulos SE. Interleukin-6 and the acute phase response during treatment of patients with Paget’s disease with the nitrogen-containing bisphosphonate dimethylaminohy-droxypropylidene bisphosphonate. J Bone Miner Res 1995; 10: 956–62.

    Article  PubMed  CAS  Google Scholar 

  71. Passeri M, Baroni MC, Pedrazzoni M, et al. Intermittent treatment with intravenous 4-amino-l-hydroxybutilydene-l,l-bisphosphonate (AHBuBP) in the therapy of postmenopausal osteoporosis. Bone Miner 1991; 15: 237–48.

    Article  PubMed  CAS  Google Scholar 

  72. Frost HM. Treatment of osteoporosis by manipulation of coherent bone cell population. Clin Orthop Rel Res 1979; 143: 227–44.

    Google Scholar 

  73. Anderson C, Cape RD, Crilly RG, et al. Preliminary observation of a form of coherence therapy for osteoporosis. Calcif Tissue Int 1984; 36: 341–3.

    Article  PubMed  CAS  Google Scholar 

  74. Turner CH. Yield behaviour of cancellous bone. J Biomech Eng 1989; 111: 1–5.

    Article  Google Scholar 

  75. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. N Engl J Med 1995; 338: 736–46.

    Google Scholar 

  76. Marshall D, Johnell O, Wedell H. Meta analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9.

    Article  PubMed  CAS  Google Scholar 

  77. Hockberg MC, Ross PD, Black D, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Arthritis Rheum 1999; 42: 1246–54.

    Article  Google Scholar 

  78. Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab 2000; 85: 231–6.

    Article  PubMed  CAS  Google Scholar 

  79. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996; 348(9041): 1535–41.

    CAS  Google Scholar 

  80. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 1998; 280: 2077–82.

    Article  PubMed  CAS  Google Scholar 

  81. Reginster J, Minne HW, Sorensen OH, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 2000; 11: 83–91.

    Article  CAS  Google Scholar 

  82. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 1999; 282: 1344–52.

    CAS  Google Scholar 

  83. Van Daele PLA, Seibel MJ, Burger H, et al. Case-control analysis of bone resorption markers, disability and hip fracture risk: the Rotterdam study. BMJ 1996; 312: 482–3.

    Article  PubMed  Google Scholar 

  84. Landman JO, Hamdy NAT, Pawels EKJ, et al. Skeletal metabolism in patients with osteoporosis after discontinuation of long term treatment with oral pamidronate. J Clin Endocrinol Metab 1995; 80: 3465–8.

    Article  PubMed  CAS  Google Scholar 

  85. Stock JL, Bell NH, Chesnut CH III, et al. Increments in bone mineral density of the lumbar spine and hip and suppression of bone turnover are maintained after discontinuation of alendronate in postmenopausal women. Am J Med 1997; 103: 291–7.

    Article  PubMed  CAS  Google Scholar 

  86. Lauren L, Osterman T, Karhi T. Pharmacokinetics of clodronate after single intravenous, intramuscular and subcutaneous injections in rats. Pharmacol Toxicol 1991; 69: 365–8.

    Article  PubMed  CAS  Google Scholar 

  87. Adami S. Zamberlan N. Adverse effects of bisphosphonates. Drug Safety 1996; 14: 158–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Sartori MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartori, L., Adami, S., Filipponi, P. et al. Injectable bisphosphonates in the treatment of postmenopausal osteoporosis. Aging Clin Exp Res 15, 271–283 (2003). https://doi.org/10.1007/BF03324509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324509

Keywords

Navigation