Skip to main content
Log in

Effect of copper deficiency on the activity levels of ceruloplasmin and superoxide dismutase in tissues of young and old rats

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Six-and 24-month-old rats were fed a copper deficient diet for 10 weeks; the copper content of the diet was one fourteenth that of a control diet. After the 10-week feeding period, the copper contents of the cerebrums, livers, lungs, and serum were decreased by 20∼17, 49∼47, 48∼37, and 84≈83%, respectively, while those of hearts and muscles were unchanged or only slightly decreased. There was no difference in the decreases in copper content of tissues between young and old rats. Copper deficiency decreased the activity level of ceruloplasmin in the serum of young and old rats by 95%, and the copper/zinc superoxide dismutase (CuZn- SOD) activity levels of cerebrums, lungs, and livers of young rats by 16, 36, and 34%, respectively, but did not change the CuZn- SOD activity levels of tissues of old rats. Although copper deficiency affected catalase activity, vitamin E concentration, and reduced glutathione concentration in several tissues, no consistent trends were observed. On the basis of the survival time of rats exposed to more than 96% oxygen, it is suggested that a decrease in CuZn- SOD activity due to copper deficiency increases oxygen susceptibility. (Aging Clin. Exp. Res. 7: 61–66, 1995)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300, 1956.

    Article  PubMed  CAS  Google Scholar 

  2. Sohal R.S.: The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res. 5: 3–17, 1993.

    CAS  Google Scholar 

  3. Matsuo M.: Age-related alterations in antioxidant defense. In: Yu B.P. (Ed.), Free radicals and aging. CRC Press, Boca Raton, 1993, pp. 143–181.

    Google Scholar 

  4. Phillips J.P., Campbell S.D., Michaud D., Charbonneau M., Hilliker A.J.: Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 86: 2761–2765, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Seto N.O.L., Hayashi S., Tener G.M.: Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl. Acad. Sci. USA 87: 4270–4274, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Mackay W.J., Bewley G.C.: The genetics of catalase in Drosophila melanogaster: isolation and characterization of acatalasemic mutants. Genetics 122: 643–652, 1989.

    PubMed  CAS  Google Scholar 

  7. Lawrence R.A., Jenkinson S.G.: Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation. J. Lab. Clin. Med. 109: 134–140, 1987.

    PubMed  CAS  Google Scholar 

  8. Goldstein B.D., Rozen M.G., Quintavalla J.C., Amoruso M.A.: Decreases in mouse lung and liver glutathione peroxidase activity and potentiation of the lethal effects of ozone and paraquat by the superoxide dismutase inhibitor diethyldithiocarbamate. Biochem. Pharmacol. 28: 27–30, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Burton G.W., Webb A., Ingold K.U.: A mild, rapid, and efficient method of lipid extraction for use in determining vitamin E/lipid ratios. Lipids 20: 29–39, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuo M., Gomi F., Dooley M.M.: Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats. Mech. Ageing Dev. 64: 273–292, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Heikkila R.E., Cabbat F.: A sensitive assay for superoxide dismutase based on the autooxidation of 6-hydroxydopamine. Anal. Biochem. 75: 356–362, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Aebi H.: Catalase in vitro. Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Flohé L., Günzler W.A.: Assays of glutathione peroxidase. Methods Enzymol. 105: 114–121, 1984.

    Article  PubMed  Google Scholar 

  14. Schosinsky K.N., Lehmann H.P., Beeler M.F.: Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin. Chem. 20: 1556–1563, 1974.

    PubMed  CAS  Google Scholar 

  15. Paynter D.I., Moir R.J., Underwood E.J.: Changes in activity of the CuZn superoxide dismutase enzyme in tissues of the rat with changes in dietary copper. J. Nutr. 109: 1570–1576, 1979.

    PubMed  CAS  Google Scholar 

  16. Chung K., Romero N., Tinker D., Keen C.L., Amemiya K., Rucker R.: Role of copper in the regulation and accumulation of superoxide dismutase and metallothionein in rat liver. J. Nutr. 118: 859–864, 1988.

    PubMed  CAS  Google Scholar 

  17. Prohaska J.R., Bailey W.R., Gross A.M., Korte J.J.: Effect of dietary copper deficiency on the distribution of dopamine and norepinephrine in mice and rats. J. Nutr. Biochem. 1: 149–154, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Lynch S.M., Strain J.J.: Effects of copper deficiency on hepatic and cardiac antioxidant enzyme activities in lactose- and sucrose-fed rats. Br. J. Nutr. 61: 345–354, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Allen P.C., Arthur J.R., Morrice P.C., Nicol F., Mills C.F.: Copper deficiency and tissue glutathione concentration in the rat. Proc. Soc. Exp. Biol. Med. 187: 38–43, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Silberman S., Fields M., Lewis C.: The effect of vitamin E on lipid peroxidation in the copper-deficient rat. J. Nutr. Biochem. 1: 98–101, 1990.

    Article  Google Scholar 

  21. Nelson S.K., Huang C-J., Mathias M.M., Allen K.G.D.: Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J. Nutr. 122: 2101–2108, 1992.

    PubMed  CAS  Google Scholar 

  22. Saari J.T., Dickerson F.D., Habib M.P.: Ethane production in copper-deficient rats. Proc. Soc. Exp. Biol. Med. 195: 30–33, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor C.G., Bettger W.J., Bray T.M.: Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. J. Nutr. 118: 613–621, 1988.

    PubMed  CAS  Google Scholar 

  24. Mas A., Sarkar B.: Uptake of 67Cu by isolated human trophoblast cells. Biochim. Biophys. Acta 1135: 123–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Esterbauer H., Gebicki J., Puhl H., Jürgens G.: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13: 341–390, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Lynch S.M., Strain J.J.: Dietary saturated or polyunsaturated fat and copper deficiency in the rat. Biol. Trace Elem. Res. 22: 131–139, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomi, F., Matsuo, M. Effect of copper deficiency on the activity levels of ceruloplasmin and superoxide dismutase in tissues of young and old rats. Aging Clin Exp Res 7, 61–66 (1995). https://doi.org/10.1007/BF03324294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324294

Keywords

Navigation