Skip to main content
Log in

Only Connect

Personal Genomics and the Future of American Medicine

  • Commentary
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Access to one’s own complete genome was unheard of just a few years ago. At present we have a smattering of identifiable complete human genomes, but the coming months and years will undoubtedly bring thousands more. What will this mean for the practice of medicine in the US? No one knows, but given the remarkable drop in the cost of DNA sequencing over the last few years, it seems a safe bet that within the next decade, primary care physicians will order patients’ whole genome sequences with no more fanfare than they would a complete blood count. But the challenges of transforming that easily accessible information into cost savings and better health outcomes will be daunting. Obviously, we lack interpretive abilities and phenotypic information commensurate with our skill in amassing DNA sequences. Worse, we have exacerbated these problems by failing to embrace the increasing ubiquity of genomic information, the populace’s interest in it, and its relevance to virtually every medical specialty. The success of personal genomics will require a profound cultural shift by every entity with a stake in human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flaubert G, Steegmuller F. The letters of Gustave Flaubert. Cambridge (MA): Harvard University Press, 1980

    Google Scholar 

  2. Hussey PS, Eibner C, Ridgely MS, et al. Controlling US health care spending: separating promising from unpromising approaches. N Engl J Med 2009 Nov 26; 361(22): 2109–11

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein DB. Common genetic variation and human traits. N Engl J Med 2009 Apr 23; 360(17): 1696–8

    Article  PubMed  CAS  Google Scholar 

  4. McGuire AL, Majumder MA. Two cheers for GINA? Genome Med 2009 Jan 20; 1(1): 6

    Article  PubMed  Google Scholar 

  5. Yngvadottir B, Macarthur DG, Jin H, et al. The promise and reality of personal genomics. Genome Biol 2009; 10(9): 237

    Article  PubMed  Google Scholar 

  6. Patch C, Sequeiros J, Cornel MC. Genetic horoscopes: is it all in the genes? Points for regulatory control of direct-to-consumer genetic testing. Eur J Hum Genet 2009 Jul; 17(7): 857–9

    Article  PubMed  Google Scholar 

  7. Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 2009 Aug; 85(2): 142–54

    Article  PubMed  CAS  Google Scholar 

  8. Drmanac R, Sparks AB, Callow MJ, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 2010 Jan 1; 327(5961): 78–81

    Article  PubMed  CAS  Google Scholar 

  9. Murphy J, Scott J, Kaufman D, et al. Public expectations for return of results from large-cohort genetic research. Am J Bioeth 2008 Nov; 8(11): 36–43

    Article  PubMed  Google Scholar 

  10. Kaufman D, Murphy J, Scott J, et al. Subjects matter: a survey of public opinions about a large genetic cohort study. Genet Med 2008 Nov; 10(11): 831–9

    Article  PubMed  Google Scholar 

  11. Kolor K, Liu T, St Pierre J, et al. Health care provider and consumer awareness, perceptions, and use of direct-to-consumer personal genomic tests, United States, 2008. Genet Med 2009 Aug; 11(8): 595

    Article  PubMed  Google Scholar 

  12. Singer E. More scientists’ genomes [blog]. Technology Review 2009 Sep 18 [online]. Available from URL: http://www.technologyreview.com/blog/editors/24133/ [Accessed 2010 Mar 2]

  13. Mir KU. Sequencing genomes: from individuals to populations. Brief Funct Genomic Proteomic 2009 Sep; 8(5):367–78.

    Article  PubMed  Google Scholar 

  14. Angrist M. Eyes wide open: the Personal Genome Project, citizen science and veracity in informed consent. Per Med 2009; 6(6): 691–9

    Article  PubMed  Google Scholar 

  15. Samuels DC, Burn DJ, Chinnery PF. Detecting new neurodegenerative disease genes: does phenotype accuracy limit the horizon? Trends Genet 2009 Nov; 25(11): 486–8

    Article  PubMed  CAS  Google Scholar 

  16. Lee SS, Crawley L. Research 2.0: social networking and direct-to-consumer (DTC) genomics. Am J Bioeth 2009; 9(6–7): 35–44

    PubMed  Google Scholar 

  17. Krause KJ. Self-reported health: potential life underwriting tool? J Insur Med 2002; 34(1): 61–7

    PubMed  Google Scholar 

  18. Leikauf J, Federman AD. Comparisons of self-reported and chart-identified chronic diseases in inner-city seniors. J Am Geriatr Soc 2009 Jul; 57(7): 1219–25

    Article  PubMed  Google Scholar 

  19. Newell SA, Girgis A, Sanson-Fisher RW, et al. The accuracy of self-reported health behaviors and risk factors relating to cancer and cardiovascular disease in the general population: a critical review. Am J Prev Med 1999 Oct; 17(3): 211–29

    Article  PubMed  CAS  Google Scholar 

  20. Fukuda H, Shinsho F. Accuracy of health examination results self-reported by Japanese participants. J Public Health (Oxf) 2007 Sep; 29(3): 316–20

    Article  Google Scholar 

  21. Wicks P, Massagli MP, Wolf C, et al. Measuring function in advanced ALS: validation of ALSFRS-EX extension items. Eur J Neurol 2009 Mar; 16(3): 353–9

    Article  PubMed  CAS  Google Scholar 

  22. Wicks P, MacPhee GJ. Pathological gambling amongst Parkinson’s disease and ALS patients in an online community (PatientsLikeMe.com). Mov Disord 2009 May 15; 24(7): 1085–8

    Article  PubMed  Google Scholar 

  23. Wicks P, Frost J. ALS patients request more information about cognitive symptoms. Eur J Neurol 2008 May; 15(5): 497–500

    Article  PubMed  CAS  Google Scholar 

  24. Frost JH, Massagli MP. Social uses of personal health information within PatientsLikeMe, an online patient community: what can happen when patients have access to one another’s data. J Med Internet Res 2008; 10(3):e15

    Article  PubMed  Google Scholar 

  25. Kuehn BM. 1000 Genomes Project promises closer look at variation in human genome. JAMA 2008 Dec 17; 300(23): 2715

    Article  PubMed  CAS  Google Scholar 

  26. Greely HT. The uneasy ethical and legal underpinnings of large-scale genomic biobanks. Annu Rev Genomics Hum Genet 2007; 8: 343–64

    Article  PubMed  CAS  Google Scholar 

  27. Peakman TC, Elliott P. The UK Biobank sample handling and storage validation studies. Int J Epidemiol 2008 Apr; 37Suppl. 1: i2–6

    Article  PubMed  Google Scholar 

  28. Krause J, Lalueza-Fox C, Orlando L, et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 2007 Nov 6; 17(21): 1908–12

    Article  PubMed  CAS  Google Scholar 

  29. Groszer M, Keays DA, Deacon RM, et al. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 2008 Mar 11; 18(5): 354–62

    Article  PubMed  CAS  Google Scholar 

  30. Enard W, Gehre S, Hammerschmidt K, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 2009 May 29; 137(5): 961–71

    Article  PubMed  CAS  Google Scholar 

  31. Bickeboller H, Campion D, Brice A, et al. Apolipoprotein E and Alzheimer disease: genotype-specific risks by age and sex. Am J Hum Genet 1997 Feb; 60(2): 439–46

    PubMed  CAS  Google Scholar 

  32. Rubinsztein DC, Easton DF. Apolipoprotein E genetic variation and Alzheimer’s disease. A meta-analysis. Dement Geriatr Cogn Disord 1999 May–Jun; 10(3): 199–209

    Article  PubMed  CAS  Google Scholar 

  33. Green RC, Roberts JS, Cupples LA, et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N Engl J Med 2009 Jul 16; 361(3): 245–54

    Article  PubMed  CAS  Google Scholar 

  34. Eckert SL, Katzen H, Roberts JS, et al. Recall of disclosed apolipoprotein E genotype and lifetime risk estimate for Alzheimer’s disease: the REVEAL study. Genet Med 2006 Dec; 8(12): 746–51

    Article  PubMed  Google Scholar 

  35. Cassidy MR, Roberts JS, Bird TD, et al. Comparing test-specific distress of susceptibility versus deterministic genetic testing for Alzheimer’s disease. Alzheimers Dement 2008 Nov; 4(6): 406–13

    Article  PubMed  Google Scholar 

  36. Chao S, Roberts JS, Marteau TM, et al. Health behavior changes after genetic risk assessment for Alzheimer disease: the REVEAL study. Alzheimer Dis Assoc Disord 2008 Jan–Mar; 22(1): 94–7

    Article  PubMed  Google Scholar 

  37. Counsyl. The campaign to end preventable genetic disease [online]. Available from URL: https://www.counsyl.com/campaign/end-preventable-genetic-disease/ [Accessed 2010 Mar 2]

  38. Collaco JM, Cutting GR. Update on gene modifiers in cystic fibrosis. Curr Opin Pulm Med 2008 Nov; 14(6): 559–66

    Article  PubMed  Google Scholar 

  39. Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm 2009 Sep; 6(9): 1297–303

    Article  PubMed  Google Scholar 

  40. Easton DF, Deffenbaugh AM, Pruss D, et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 2007 Nov; 81(5): 873–83

    Article  PubMed  CAS  Google Scholar 

  41. Grist SA, Dubowsky A, Suthers G. Evaluating DNA sequence variants of unknown biological significance. Methods Mol Med 2008; 141: 199–217

    Article  PubMed  CAS  Google Scholar 

  42. Karow J. Duke to sequence 50 human genomes on Illumina GA; plans more large sequencing studies. In Sequence 2009 Jan 20 [online]. Available from URL: http://www.genomeweb.com/sequencing/duke-sequence-50-human-genomes-illumina-ga-plans-more-large-sequencing-studies [Accessed 2010 Mar 2]

  43. Ge D, Goldstein DB. Sequence Variant Analyzer [computer program]. Durham (NC): Duke Institute for Genome Sciences & Policy, 2009 [online]. Available from URL: http://people.genome.duke.edu/dg48/sva/ [Accessed 2010 Mar 2]

  44. Liu E, Olson M, Rotimi C. Scanning the whole genome horizon: where genomics is going next [panel discussion]. Translating “ELSI”: Ethical, Legal and Social Implications of Genomics Conference; 2008 May 1–3; Cleveland (OH)

  45. Brenner SE. Common sense for our genomes. Nature 2007 Oct 18; 449(7164): 783–4

    Article  PubMed  CAS  Google Scholar 

  46. Lunshof JE, Chadwick R, Church GM. Hippocrates revisited? Old ideals and new realities. Genomic Med 2008 Jan; 2(1–2): 1–3

    Article  PubMed  Google Scholar 

  47. Jonas DE, McLeod HL. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci 2009 Jul; 30(7): 375–86

    Article  PubMed  CAS  Google Scholar 

  48. O’Reilly RA, Aggeler PM, Hoag MS, et al. Hereditary transmission of exceptional resistance to coumarin anticoagulant drugs: the first reported kindred. N Engl J Med 1964 Oct 15; 271: 809–15

    Article  PubMed  Google Scholar 

  49. Hayden EC. Cardiovascular disease gets personal. Nature 2009 Aug 20; 460(7258): 940–1

    Article  PubMed  Google Scholar 

  50. Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis 2008 Feb; 25(1): 45–51

    Article  PubMed  CAS  Google Scholar 

  51. You JH, Tsui KK, Wong RS, et al. Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy. Clin Pharmacol Ther 2009 Nov; 86(5): 540–7

    Article  PubMed  CAS  Google Scholar 

  52. Ferder N, Eby CS, Deych E, et al. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy. J Thromb Haemost 2010 Jan; 8(1): 95–100

    Article  PubMed  CAS  Google Scholar 

  53. Klein TE, Altman RB, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009 Feb 19; 360(8): 753–64

    Article  PubMed  Google Scholar 

  54. Cavallari LH, Limdi NA. Warfarin pharmacogenomics. Curr Opin Mol Ther 2009 Jun; 11(3): 243–51

    PubMed  CAS  Google Scholar 

  55. Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007 Jan; 11(1): 37–51

    Article  PubMed  CAS  Google Scholar 

  56. Geddes L. Cancer therapy: when all else fails. New Scientist 2007 Mar 28 [online]. Available from URL: http://www.newscientist.com/article/mg19325973.800-cancer-therapy-when-all-else-fails.html?full=true [Accessed 2010 Mar 2]

  57. Stacpoole PW, Henderson GN, Yan Z, et al. Pharmacokinetics, metabolism and toxicology of dichloroacetate. Drug Metab Rev 1998 Aug; 30(3): 499–539

    Article  PubMed  CAS  Google Scholar 

  58. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science. JAMA 2001 Feb 7; 285(5): 540–4

    Article  PubMed  CAS  Google Scholar 

  59. van Ommen GJ. The Human Genome Project and the future of diagnostics, treatment and prevention. J Inherit Metab Dis 2002 May; 25(3): 183–8

    Article  PubMed  Google Scholar 

  60. Dickson SP, Wang K, Krantz I, et al. Rare variants create synthetic genome-wide associations. PLoS Biol 2010; 8(1): e1000294

    Article  PubMed  Google Scholar 

  61. Oliveira JR. Offering unproven genetic tests to the public is irresponsible [commentary]. Nature 2008 Dec 4; 456(7222): 570

    Article  PubMed  CAS  Google Scholar 

  62. McGuire AL, Burke W. An unwelcome side effect of direct-to-consumer personal genome testing: raiding the medical commons. JAMA 2008 Dec 10; 300(22): 2669–71

    Article  PubMed  CAS  Google Scholar 

  63. Janssens AC, Gwinn M, Bradley LA, et al. A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions. Am J Hum Genet 2008 Mar; 82(3): 593–9

    Article  PubMed  CAS  Google Scholar 

  64. Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle: will we get our wish? N Engl J Med 2008 Jan 10; 358(2): 105–7

    Article  PubMed  CAS  Google Scholar 

  65. Fox JL. What price personal genome exploration? Nat Biotechnol 2008 Oct; 26(10): 1105–8

    Article  PubMed  CAS  Google Scholar 

  66. Feero WG, Guttmacher AE, Collins FS. The genome gets personal: almost. JAMA 2008 Mar 19; 299(11): 1351–2

    Article  PubMed  CAS  Google Scholar 

  67. Direct-to-consumer genetic tests: flawed and unethical [commentary]. Lancet Oncol 2008 Dec; 9(12): 1113

    Article  Google Scholar 

  68. Nossov V, Amneus M, Su F, et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol 2008 Sep; 199(3): 215–23

    Article  PubMed  CAS  Google Scholar 

  69. Harvey P, Basuita A, Endersby D, et al. A systematic review of the diagnostic accuracy of prostate specific antigen. BMC Urol 2009; 9: 14

    Article  PubMed  Google Scholar 

  70. Gotzsche PC, Nielsen M. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2009; (4): CD001877

  71. Khoury MJ, McBride CM, Schully SD, et al. The scientific foundation for personal genomics: recommendations from a National Institutes of Health-Centers for Disease Control and Prevention multidisciplinary workshop. Genet Med 2009 Aug; 11(8): 559–67

    Article  PubMed  CAS  Google Scholar 

  72. Ray T. Navigenics launches cheaper annual genomic service; will doctors bite? Pharmacogenomics Reporter 2009 Feb 4 [online]. Available from URL: http://www.genomeweb.com/dxpgx/navigenics-launches-cheaper-annual-genomic-service-will-doctors-bite?page=2 [Accessed 2010 Mar 2]

  73. Angrist M. We are the genes we’ve been waiting for: rational responses to the gathering storm of personal genomics. Am J Bioeth 2009; 9(6–7): 30–1

    PubMed  Google Scholar 

  74. Ray T. Illumina partners with DTC genomics firms to offer whole genome sequencing for $48K. GenomeWeb Daily News 2009 June 11 [online]. Available from URL: http://www.genomeweb.com/sequencing/illumina-partners-dtc-genomics-firms-offer-whole-genome-sequencing-48k [Accessed 2010 Mar 2]

  75. Lakhman K. Correlagen debuts Helicos-based cardiac panel; is there room for Illumina’s GA2? The Sample 2009 Oct 19 [online]. Available from URL: http://www.genomeweb.com/blog/correlagen-debuts-helicos-based-cardiac-panel-there-room-illumina%E2%80%99s-ga2 [Accessed 2010 Mar 2]

  76. Mills Shaw KR, Van Horne K, Zhang H, et al. Essay contest reveals mis-conceptions of high school students in genetics content. Genetics 2008 Mar; 178(3): 1157–68

    Article  PubMed  Google Scholar 

  77. Greb AE, Brennan S, McParlane L, et al. Retention of medical genetics knowledge and skills by medical students. Genet Med 2009 May; 11(5): 365–70

    Article  PubMed  Google Scholar 

  78. Telner DE, Carroll JC, Talbot Y. Genetics education in medical school: a qualitative study exploring educational experiences and needs. Med Teach 2008; 30(2): 192–8

    Article  PubMed  Google Scholar 

  79. Trinidad SB, Fryer-Edwards K, Crest A, et al. Educational needs in genetic medicine: primary care perspectives. Community Genet 2008; 11(3): 160–5

    Article  PubMed  Google Scholar 

  80. Freimer N, Sabatti C. The Human Phenome Project. Nat Genet 2003 May; 34(1): 15–21

    Article  PubMed  CAS  Google Scholar 

  81. Stern AM. A quiet revolution: the birth of the genetic counselor at Sarah Lawrence College, 1969. J Genet Couns 2009 Feb; 18(1): 1–11

    Article  PubMed  Google Scholar 

  82. Harrison TA, Doyle DL, McGowan C, et al. Billing for medical genetics and genetic counseling services: a national survey. J Genet Couns 2010 Feb; 19(1): 38–43

    Article  PubMed  Google Scholar 

  83. Forster EM. Howards End. New York, London: G. P. Putnam’s Sons, 1910

    Google Scholar 

  84. Dunn EH, Francis CM, Blancher PJ, et al. Enhancing the scientific value of the Christmas Bird Count. Auk 2005 Jan; 122(1): 338–46

    Article  Google Scholar 

  85. Kosik KS. The wikification of knowledge. Nieman Reports 2008 Winter [online]. Available from URL: http://www.nieman.harvard.edu/reportsitem.aspx?id=100690 [Accessed 2010 Mar 2]

Download references

Acknowledgments

My work is supported in part by National Institutes of Health grant no. P50-HG-003391. I received complimentary genotyping from Navigenics and 23andMe. I have no other competing interests to declare.

My perspective on personal genomics has been informed by several years of conversation with many of the leading thinkers in the field, including David Goldstein, Hunt Willard, Bob Cook-Deegan, George Church, Jason Bobe, Linda Avey, Dietrich Stephan, Hugh Rienhoff, Jenny Reardon, Barbara Prainsack, Louiqa Raschid, Charmaine Royal, Duana Fullwiley, Amy McGuire, Jim Evans, Robert Green, Maynard Olson, and Steve Brenner. I am grateful to each of them for their time and insights. Any factual errors or logical failings, however, are mine alone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Angrist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angrist, M. Only Connect. Mol Diag Ther 14, 67–72 (2010). https://doi.org/10.1007/BF03256355

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256355

Keywords

Navigation