Skip to main content
Log in

The Effects of Immunosuppression on Regulatory CD4+CD25+ T Cells

Impact on Immunosuppression Selection in Transplantation

  • Immunology
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

During immune response and T-cell activation, both effector T cells and regulatory T (Treg) cells are activated and regulated simultaneously by both positive and negative pathways. CD4+CD25+ Treg cells play a critical role in immune tolerance to self antigens as well as to allografts in some transplant settings. Effective immunosuppressive regimens significantly reduced the incidence of acute allograft rejection in patients following organ transplantation. However, the impact of immunosuppressive treatment on the potential induction of transplant tolerance has not been well determined. In this review we summarize the effects of immunosuppressive reagents on CD4+CD25+ Treg cells in order to bring attention to this issue, which may affect the choice of immunosuppressive regimen in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nashan B. Maximizing the clinical outcome with mTOR inhibitors in the renal transplant recipient: defining the role of calcineurin inhibitors. Transplant Int 2004; 17: 279–85

    Article  CAS  Google Scholar 

  2. Chan L, Gaston R, Hariharan S. Evolution of immunosuppression and continued importance of acute rejection in renal transplantation. Am J Kidney Dis 2001; 38(6 Suppl. 6): S2–9

    Article  PubMed  CAS  Google Scholar 

  3. Land W, Vincenti F. Toxicity-sparing protocols using mycophenolate mofetil in renal transplantation. Transplantation 2005; 80(2 Suppl.): S221–34

    Article  PubMed  CAS  Google Scholar 

  4. Shapiro R, Young JB, Milford EL, et al. Immunosuppression: evolution in practice and trends, 1993–2003. Am J Transplant 2005; 5: 874–86

    Article  PubMed  Google Scholar 

  5. Kirk AD. Induction immunosuppression. Transplantation 2006; 82: 593–602

    Article  PubMed  Google Scholar 

  6. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210

    Article  PubMed  CAS  Google Scholar 

  7. Cobbold SP, Adams E, Graca L, et al. Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol Rev 2006; 213: 239–55

    Article  PubMed  CAS  Google Scholar 

  8. Aluvihare VR, Betz AG. The role of regulatory T cells in alloantigen tolerance. Immunol Rev 2006; 212: 330–43

    Article  PubMed  CAS  Google Scholar 

  9. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood 2006; 108: 804–11

    Article  PubMed  CAS  Google Scholar 

  10. Vigoureux S, Yvon E, Biagi E, et al. Antigen-induced regulatory T cells. Blood 2004; 104: 26–33

    Article  CAS  Google Scholar 

  11. Wing K, Fehervari Z, Sakaguchi S. Emerging possibilities in the development and function of regulatory T cells. Int Immunol 2006; 18: 991–1000

    Article  PubMed  CAS  Google Scholar 

  12. Steger U, Kingsley CI, Karim M, et al. CD25+CD4+ regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation 2006; 82: 1202–9

    Article  PubMed  Google Scholar 

  13. Setoguchi R, Hori S, Takahashi T, et al. Homeostatic maintenance of natural FOXP3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005; 201: 723–35

    Article  PubMed  CAS  Google Scholar 

  14. Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol 2004; 172: 3983–8

    PubMed  CAS  Google Scholar 

  15. Stephens LA, Gray D, Anderton SM. CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci U S A 2005; 102: 17418–23

    Article  PubMed  CAS  Google Scholar 

  16. Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 2003; 171: 3348–52

    PubMed  CAS  Google Scholar 

  17. Zhao Y. The two simultaneously occurring processes in one immune response: the positive immune reaction and immune tolerance. Med Hypotheses 2006; 67: 1384–5

    Article  PubMed  CAS  Google Scholar 

  18. Zhao Y. The different effects of cyclosporin A and rapamycin on regulatory CD4+CD25+T cells: potential relationship with transplant tolerance induction. Expert Rev Clin Immunol 2007; 3: 1–4

    Article  Google Scholar 

  19. Sakaguchi S, Ono M, Setoguchi R, et al. FOXP3+ CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27

    Article  PubMed  CAS  Google Scholar 

  20. Sakaguchi S. Naturally arising FOXP3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–52

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–80

    Article  PubMed  CAS  Google Scholar 

  22. Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate costimulatory molecules on antigen-presenting cells. Eur J Immunol 2000; 30: 1538–43

    Article  PubMed  CAS  Google Scholar 

  23. Chen D, Zhang N, Fu S, et al. CD4+ CD25+ regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes 2006; 55: 1011–21

    Article  PubMed  CAS  Google Scholar 

  24. Fontenot JD, Gavin MA, Rudensky AY. FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–6

    Article  PubMed  CAS  Google Scholar 

  25. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3. Science 2003; 299: 1057–61

    Article  PubMed  CAS  Google Scholar 

  26. Zhang L, Zhao Y. The regulation of FOXP3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road. J Cell Physiol 2007; 211: 590–7

    Article  PubMed  CAS  Google Scholar 

  27. Kingsley CI, Karim M, Bushell AR, et al. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002; 168: 1080–6

    PubMed  CAS  Google Scholar 

  28. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–50

    Article  PubMed  CAS  Google Scholar 

  29. Dai Z, Li Q, Wang Y, et al. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 2004; 113: 310–7

    PubMed  CAS  Google Scholar 

  30. Salama AD, Najafian N, Clarkson MR, et al. Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol 2003; 14: 1643–51

    Article  PubMed  Google Scholar 

  31. Masunaga T, Yamashita K, Sakihama H, et al. Dimeric but not monomeric soluble CD40 prolongs allograft survival and generates regulatory T cells that inhibit CTL function. Transplantation 2005; 80: 1614–22

    Article  PubMed  Google Scholar 

  32. Jiang S, Camara N, Lombardi G, et al. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 2003; 102: 2180–6

    Article  PubMed  CAS  Google Scholar 

  33. Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med 2002; 195: 1641–6

    Article  PubMed  CAS  Google Scholar 

  34. Ermann J, Hoffmann P, Edinger M, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005; 105: 2220–6

    Article  PubMed  CAS  Google Scholar 

  35. Yi H, Zhen Y, Jiang L, et al. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol 2006; 3: 189–95

    PubMed  CAS  Google Scholar 

  36. Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in FOXP3-expressing regulatory T cells. Nat Immunol 2005; 6: 1142–51

    Article  PubMed  CAS  Google Scholar 

  37. D’Cruz LM, Klein L. Development and function of agonist-induced CD25+FOXP3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005; 6: 1152–9

    Article  PubMed  CAS  Google Scholar 

  38. Wang H, Zhao L, Sun Z, et al. A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation 2006; 82: 1484–92

    Article  PubMed  CAS  Google Scholar 

  39. Shibutani S, Inoue F, Aramaki O, et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. Transplantation 2005; 79: 904–13

    Article  PubMed  CAS  Google Scholar 

  40. Gao W, Oukka M, Kuchroo V, et al. Contrasting effects of cyclosporin and rapamycin in de novo generation of alloantigen-stimulated regulatory T cells. Transplantation 2006; 82: 79

    Google Scholar 

  41. Blaha P, Bigenzahn S, Koporc Z, et al. The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 2003; 101: 2886–93

    Article  PubMed  CAS  Google Scholar 

  42. Taylor PA, Lees CJ, Wilson JM, et al. Combined effects of calcineurin inhibitors or sirolimus with anti-CD40L mAb on alloengraftment under nonmyeloablative conditions. Blood 2002; 100: 3400–7

    Article  PubMed  CAS  Google Scholar 

  43. Kawai M, Kitade H, Mathieu C, et al. Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo. Transplantation 2005; 79: 1073–7

    Article  PubMed  CAS  Google Scholar 

  44. Smith CR, Mohanakumar T, Shimizu Y, et al. Brief cyclosporine treatment prevents intrathymic (IT) tolerance induction and precipitates acute rejection in an IT rat cardiac allograft model. Transplantation 2000; 69: 294–9

    Article  PubMed  CAS  Google Scholar 

  45. Segundo DS, Ruiz JC, Izquierdo M, et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 2006; 82: 550–7

    Article  PubMed  CAS  Google Scholar 

  46. Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 2005; 80: 110–7

    Article  PubMed  CAS  Google Scholar 

  47. Strauss L, Whiteside TL, Knights A, et al. Selective survival of naturally occurring human CD4+CD25+FOXP3+ regulatory T cells cultured with rapamycin. J Immunol 2007; 178: 320–9

    PubMed  CAS  Google Scholar 

  48. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FOXP3+ regulatory T cells. Blood 2005; 105: 4743–8

    Article  PubMed  CAS  Google Scholar 

  49. Keever-Taylor CA, Browning MB, Johnson BD, et al. Rapamycin enriches for CD4(+) CD25(+) CD27(+) FOXP3(+) regulatory T cells in ex vivo-expanded CD25-enriched products from healthy donors and patients with multiple sclerosis. Cytotherapy 2007; 9: 144–57

    Article  PubMed  CAS  Google Scholar 

  50. Coenen JJ, Koenen HJ, van Rijssen E, et al. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood 2006; 107: 1018–23

    Article  PubMed  CAS  Google Scholar 

  51. Valmori D, Tosello V, Souleimanian NE, et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol 2006; 177: 944–9

    PubMed  CAS  Google Scholar 

  52. Qu Y, Zhang B, Zhao L, et al. The effect of immunosuppressive drug rapamycin on regulatory CD4(+)CD25(+)FOXP3(+)T cells in mice. Transpl Immunol 2007; 17: 153–61

    Article  PubMed  CAS  Google Scholar 

  53. Tian L, Lu L, Yuan Z, et al. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation 2004; 77: 183–9

    Article  PubMed  CAS  Google Scholar 

  54. Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006; 177: 8338–47

    PubMed  CAS  Google Scholar 

  55. Battaglia M, Stabilini A, Draghici E, et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 2006; 55: 40–9

    Article  PubMed  CAS  Google Scholar 

  56. Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004; 172: 5287–96

    PubMed  CAS  Google Scholar 

  57. Suarez A, Lopez P, Gomez J, et al. Enrichment of CD4+ CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis 2006; 65: 1512–7

    Article  PubMed  CAS  Google Scholar 

  58. Fattorossi A, Battaglia A, Buzzonetti A, et al. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology 2005; 116: 134–41

    Article  PubMed  CAS  Google Scholar 

  59. Karagiannidis C, Akdis M, Holopainen P, et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 2004; 114: 1425–33

    Article  PubMed  CAS  Google Scholar 

  60. Navarro J, Aristimuno C, Sanchez-Ramon S, et al. Circulating dendritic cells subsets and regulatory T-cells at multiple sclerosis relapse: differential short-term changes on corticosteroids therapy. J Neuroimmunol 2006; 176: 153–61

    Article  PubMed  CAS  Google Scholar 

  61. Chen X, Oppenheim JJ, Winkler-Pickett RT, et al. Glucocorticoid amplifies IL-2-dependent expansion of functional FOXP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 2006; 36: 2139–49

    Article  PubMed  CAS  Google Scholar 

  62. Chen X, Murakami T, Oppenheim JJ, et al. Differential response of murine CD4+CD25+ and CD4+CD25-T cells to dexamethasone-induced cell death. Eur J Immunol 2004; 34: 859–69

    Article  PubMed  CAS  Google Scholar 

  63. Barrat FJ, Cua DJ, Boonstra A, et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 2002; 195: 603–16

    Article  PubMed  CAS  Google Scholar 

  64. Fiorucci S, Antonelli E, Distrutti E, et al. NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Proc Natl Acad Sci U S A 2002; 99: 15770–5

    Article  PubMed  CAS  Google Scholar 

  65. Rea D, van Kooten C, van Meijgaarden KE, et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 2000; 95: 3162–7

    PubMed  CAS  Google Scholar 

  66. Pedersen AE, Gad M, Walter MR, et al. Induction of regulatory dendritic cells by dexamethasone and lalpha,25-Dihydroxyvitamin D(3). Immunol Lett 2004; 91: 63–9

    Article  PubMed  CAS  Google Scholar 

  67. Stock P, Akbari O, De Kruyff RH, et al. Respiratory tolerance is inhibited by the administration of corticosteroids. J Immunol 2005; 175: 7380–7

    PubMed  CAS  Google Scholar 

  68. Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001; 167: 1945–53

    PubMed  CAS  Google Scholar 

  69. Preville X, Flacher M, LeMauff B, et al. Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 2001; 71: 460–8

    Article  PubMed  CAS  Google Scholar 

  70. Kawai T, Cosimi AB, Colvin RB, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 1995; 59: 256–62

    PubMed  CAS  Google Scholar 

  71. Hale DA, Gottschalk R, Maki T, et al. Determination of an improved sirolimus (rapamycin)-based regimen for induction of allograft tolerance in mice treated with antilymphocyte serum and donor-specific bone marrow. Transplantation 1998; 65: 473–9

    Article  PubMed  CAS  Google Scholar 

  72. Minamimura K, Gao W, Maki T. CD4+ regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody. J Immunol 2006; 176: 4125–32

    PubMed  CAS  Google Scholar 

  73. Ogawa N, Minamimura K, Kodaka T, et al. Short administration of polyclonal anti-T cell antibody (ALS) in NOD mice with extensive insulitis prevents subsequent development of autoimmune diabetes. J Autoimmun 2006; 26: 225–31

    Article  PubMed  CAS  Google Scholar 

  74. Hale DA, Gottschalk R, Umemura A, et al. Immunologic mechanisms in tolerance produced in mice with nonradiation-based lymphoablation and donor-specific bone marrow. Transplantation 2002; 74: 477–84

    Article  PubMed  CAS  Google Scholar 

  75. Lopez M, Clarkson MR, Albin M, et al. A novel mechanism of action for antithymocyte globulin: induction of CD4+CD25+FOXP3+ regulatory T cells. J Am Soc Nephrol 2006; 17: 2844–53

    Article  PubMed  CAS  Google Scholar 

  76. Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation: Daclizumab Triple Therapy Study Group. N Engl J Med 1998; 338: 161–5

    Article  PubMed  CAS  Google Scholar 

  77. Nashan B, Moore R, Amlot P, et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients: CHIB 201 International Study Group. Lancet 1997; 350: 1193–8

    Article  PubMed  CAS  Google Scholar 

  78. Vincenti F, de Andres A, Becker T, et al. Interleukin-2 receptor antagonist induction in modern immunosuppression regimens for renal transplant recipients. Transpl Int 2006; 19: 446–57

    Article  PubMed  CAS  Google Scholar 

  79. McNeill A, Spittle E, Backstrom BT. Partial depletion of CD691ow-expressing natural regulatory T cells with the anti-CD25 monoclonal antibody PC61. Scand J Immunol 2007; 65: 63–9

    Article  PubMed  CAS  Google Scholar 

  80. Kohm AP, McMahon JS, Podojil JR, et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 2006; 176: 3301–5

    PubMed  CAS  Google Scholar 

  81. Li W, Carper K, Liang Y, et al. Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant Proc 2006; 38: 3207–8

    Article  PubMed  CAS  Google Scholar 

  82. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194: 823–32

    Article  PubMed  CAS  Google Scholar 

  83. El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 2006; 105: 430–7

    Article  PubMed  Google Scholar 

  84. Imai H, Saio M, Nonaka K, et al. Depletion of CD4(+)CD25(+) regulatory T cells enhances interleukin-2-induced antitumor immunity in a mouse model of colon adenocarcinoma. Cancer Sci 2007; 98: 416–23

    Article  PubMed  CAS  Google Scholar 

  85. Game DS, Hernandez-Fuentes MP, Lechler RI. Everolimus and basiliximab permit suppression by human CD4+CD25+ cells in vitro. Am J Transplant 2005; 5: 454–64

    Article  PubMed  CAS  Google Scholar 

  86. Kreijveld E, Koenen HJ, Klasen IS, et al. Following anti-CD25 treatment, a functional CD4+CD25+ regulatory T-cell pool is present in renal transplant recipients. Am J Transplant 2007; 7: 249–55

    Article  PubMed  CAS  Google Scholar 

  87. Luke PP, O’Brien CA, Jevnikar AM, et al. Anti-CD45RB monoclonal antibody-mediated transplantation tolerance. Curr Mol Med 2001; 1: 533–43

    Article  PubMed  CAS  Google Scholar 

  88. Salvalaggio PR, Camirand G, Ariyan CE, et al. Antigen exposure during enhanced CTLA-4 expression promotes allograft tolerance in vivo. J Immunol 2006; 176: 2292–8

    PubMed  CAS  Google Scholar 

  89. Basadonna GP, Auersvald L, Khuong CQ, et al. Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy. Proc Natl Acad Sci USA 1998; 95: 3821–6

    Article  PubMed  CAS  Google Scholar 

  90. Luke PP, Deng JP, Lian D, et al. Prolongation of allograft survival by administration of anti-CD45RB monoclonal antibody is due to alteration of CD45RBhi: CD45RBlo T-cell proportions. Am J Transplant 2006; 6: 2023–34

    Article  PubMed  CAS  Google Scholar 

  91. Min WP, Zhou D, Ichim TE, et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol 2003; 170: 1304–12

    PubMed  CAS  Google Scholar 

  92. Chen G, Luke PP, Yang H, et al. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys. Am J Transplant 2007; 7: 27–37

    Article  PubMed  CAS  Google Scholar 

  93. Winsor-Hines D, Merrill C, O’Mahony M, et al. Induction of immunological tolerance/hyporesponsiveness in baboons with a nondepleting CD4 antibody. J Immunol 2004; 173: 4715–23

    PubMed  CAS  Google Scholar 

  94. Hall BM, Fava L, Chen J, et al. Anti-CD4 monoclonal antibody-induced tolerance to MHC-incompatible cardiac allografts maintained by CD4+ suppressor T cells that are not dependent upon IL-4. J Immunol 1998; 161: 5147–56

    PubMed  CAS  Google Scholar 

  95. Aramaki O, Shirasugi N, Akiyama Y, et al. Induction of operational tolerance and generation of regulatory cells after intratracheal delivery of alloantigen combined with nondepleting anti-CD4 monoclonal antibody. Transplantation 2003; 76: 1305–14

    Article  PubMed  CAS  Google Scholar 

  96. Saitovitch D, Bushell A, Mabbs DW, et al. Kinetics of induction of transplantation tolerance with a nondepleting anti-Cd4 monoclonal antibody and donor-specific transfusion before transplantation: a critical period of time is required for development of immunological unresponsiveness. Transplantation 1996; 61: 1642–7

    Article  PubMed  CAS  Google Scholar 

  97. Sawitzki B, Kingsley CI, Oliveira V, et al. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med 2005; 201: 1925–35

    Article  PubMed  CAS  Google Scholar 

  98. Cobbold SP, Castejon R, Adams E, et al. Induction of FOXP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 2004; 172: 6003–10

    PubMed  CAS  Google Scholar 

  99. Karim M, Kingsley CI, Bushell AR, et al. Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process. J Immunol 2004; 172: 923–8

    PubMed  CAS  Google Scholar 

  100. Yi H, Zhao Y. The enhanced percentages of Treg cells in depleting anti-CD4 mAb-treated mice. Transplantation. In press

  101. Countouriotis A, Moore TB, Sakamoto KM. Cell surface antigen and molecular targeting in the treatment of hematologic malignancies. Stem Cells 2002; 20: 215–29

    Article  PubMed  CAS  Google Scholar 

  102. Lockwood CM, Hale G, Waldman H, et al. Remission induction in Behcet’s disease following lymphocyte depletion by the anti-CD52 antibody CAMPATH 1-H. Rheumatology (Oxford) 2003; 42: 1539–44

    Article  CAS  Google Scholar 

  103. Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int 2006; 19: 705–14

    Article  PubMed  CAS  Google Scholar 

  104. Knechtle SJ, Pirsch JD, Fechner JH, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 2003; 3: 722–30

    Article  PubMed  CAS  Google Scholar 

  105. Masuyama J, Kaga S, Kano S, et al. A novel costimulation pathway via the 4C8 antigen for the induction of CD4+ regulatory T cells. J Immunol 2002; 169: 3710–6

    PubMed  CAS  Google Scholar 

  106. Watanabe T, Masuyama J, Sohma Y, et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol 2006; 120: 247–59

    Article  PubMed  CAS  Google Scholar 

  107. Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005; 5: 465–74

    Article  PubMed  CAS  Google Scholar 

  108. Nathan MJ, Yin D, Eichwald EJ, et al. The immunobiology of inductive anti-CD40L therapy in transplantation: allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2002; 2: 323–32

    Article  PubMed  CAS  Google Scholar 

  109. Zheng XX, Sanchez-Fueyo A, Domenig C, et al. The balance of deletion and regulation in allograft tolerance. Immunol Rev 2003; 196: 75–84

    Article  PubMed  CAS  Google Scholar 

  110. Uchida N, Shirasugi N, Akiyama Y, et al. Induction of indefinite survival of fully allogeneic cardiac grafts and generation of regulatory cells by intratracheal delivery of alloantigens under blockade of the CD40 pathway. Transplantation 2003; 75: 878–84

    Article  PubMed  CAS  Google Scholar 

  111. Ito H, Takeuchi Y, Shaffer J, et al. Anti-CD40L monoclonal antibodies can replace anti-CD4 monoclonal antibodies for the nonmyeloablative induction of mixed xenogeneic chimerism. Transplantation 2006; 82: 251–7

    Article  PubMed  CAS  Google Scholar 

  112. Coenen JJ, Koenen HJ, van Rijssen E, et al. Tolerizing effects of co-stimulation blockade rest on functional dominance of CD4+CD25+ regulatory T cells. Transplantation 2005; 79: 147–56

    Article  PubMed  CAS  Google Scholar 

  113. Bisikirska BC, Herold KC. Use of anti-CD3 monoclonal antibody to induce immune regulation in type 1 diabetes. Ann N Y Acad Sci 2004; 1037: 1–9

    Article  PubMed  CAS  Google Scholar 

  114. Herold KC, Taylor L. Treatment of type 1 diabetes with anti-CD3 monoclonal antibody: induction of immune regulation? Immunol Res 2003; 28: 141–50

    Article  PubMed  CAS  Google Scholar 

  115. Chatenoud L, Primo J, Bach JF. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 1997; 158: 2947–54

    PubMed  CAS  Google Scholar 

  116. Belghith M, Bluestone JA, Barriot S, et al. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 2003; 9: 1202–8

    Article  PubMed  CAS  Google Scholar 

  117. Bisikirska B, Colgan J, Luban J, et al. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005; 115: 2904–13

    Article  PubMed  CAS  Google Scholar 

  118. Demirci G, Amanullah F, Kewalaramani R, et al. Critical role of OX40 in CD28 and CD154-independent rejection. J Immunol 2004; 172: 1691–8

    PubMed  CAS  Google Scholar 

  119. Valzasina B, Guiducci C, Dislich H, et al. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005; 105: 2845–51

    Article  PubMed  CAS  Google Scholar 

  120. Ito T, Wang YH, Duramad O, et al. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci U S A 2006; 103: 13138–43

    Article  PubMed  CAS  Google Scholar 

  121. Kreijveld E, Koenen HJ, Hilbrands LB, et al. The immunosuppressive drug FK778 induces regulatory activity in stimulated human CD4+CD25-T cells. Blood 2007 Jan 1; 109(1): 244–52

    Article  PubMed  CAS  Google Scholar 

  122. Lamioni A, Parisi F, Isacchi G, et al. The immunological effects of extracorporeal photopheresis unraveled: induction of tolerogenic dendritic cells in vitro and regulatory T cells in vivo. Transplantation 2005; 79: 846–50

    Article  PubMed  Google Scholar 

  123. Grimbert P, Bouguermouh S, Baba N, et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25-T cells in response to inflammation. J Immunol 2006; 177: 3534–41

    PubMed  CAS  Google Scholar 

  124. Zhang A, Qu Y, Zhang B, et al. The different effects of indirubin on effector and CD4+CD25+ regulatory T cells in mice: potential implication for the treatment of autoimmune diseases. J Mol Med 2007; 85: 1263–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to Dr Zhao from the Chinese National Natural Science Foundation for Distinguished Young Scholars (No. 30425026), the Knowledge Innovation Program of CAS (KSCX2-SW-333), the National Natural Science Foundation for Key Programs (No. 30630060), the National Basic Research Program (973 Program, 2003CB515501), and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (2005-546).

The authors have no conflicts of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javeed, A., Zhao, Y. The Effects of Immunosuppression on Regulatory CD4+CD25+ T Cells. Mol Diag Ther 12, 171–181 (2008). https://doi.org/10.1007/BF03256281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256281

Keywords

Navigation