Skip to main content
Log in

Thermal recalescence and mushy zone coarsening in undercooled melts

  • Solidification Modeling
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Precision adiabatic recalescence experiments on both pure and binary undercooled melts have been conducted. The adiabatic constraint limits the amount of net phase transformation from the metastable under-cooled state (creating a mushy zone) and also sets bounds on the microstructural parameters of the mushy zone, namely the volume fraction of the phases, their length scales, and the interfacial compositions. As many as three distinct kinetic time scales are observed in these experiments: a short time scale (less than ∼1 s) of rapidly increasing temperature from the initial nucleation temperature, associated with the propagation of the dendrites and release of latent heat; an intermediate time scale (∼103–104 s) of slowly rising temperature, associated with coarsening of the mushy zone; and a long time scale (days) of steadily falling temperature, associated with solid-state diffusional adjustments near the solid-liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Trivedi, Lectures on the Theory of Phase Transformations, ed. H.I. Aaronson (Warrendale, PA: TMS, 1975), pp. 51–81.

    Google Scholar 

  2. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans. Tech. Publications, 1986), p. 13.

    Google Scholar 

  3. O.M. Todes, J. Physical Chem. (Russ.) 20 (1946), p. 630.

    Google Scholar 

  4. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961), p. 315.

    Google Scholar 

  5. C. Wagner, Z. Elektrochem., 65 (1961), p. 581.

    CAS  Google Scholar 

  6. J.A. Marqusee and J. Ross, J. Chem. Phys., 80(1) (1984), p. 536.

    CAS  Google Scholar 

  7. P.W. Voorhees, J. Stat. Phys., 38 (1985), p. 231.

    Google Scholar 

  8. S.P. Marsh, Ph.D thesis, Rensselaer Polytechnic Institute (1989).

    Google Scholar 

  9. S.P. Marsh, R.N. Smith, and M.E. Glicksman, Heat Transfer in Phase Change, ed. I.S. Habib, L.S. Yao, and J. Goodman (New York: ASME, 1992), p. 47.

    Google Scholar 

  10. R.T. DeHoff and C.V. Iswaran, Met. Trans. A, 13A (1982), p. 1389.

    Google Scholar 

  11. P.W. Voorhees and M.E. Glicksman, J. Crystal Growth, 72 (1985), p. 599.

    CAS  Google Scholar 

  12. S.P. Marsh and M.E. Glicksman, Modeling and Control of Casting and Welding Processes, ed. S. Kou and R. Mehrabian (Warrendale, PA: TMS, 1986), pp. 579–585.

    Google Scholar 

  13. P.W. Voorhees, Met. Trans., 21A (1990), p. 27–37.

    CAS  Google Scholar 

  14. L. A. Meloro, M.S. thesis, Rensselaer Polytechnic Institute (1988).

  15. The International Practical Temperature Scale of 1968, Metrologia, 5 (1969), p. 35.

  16. R. Kuklinski and R.N. Smith, Heat Transfer in Manufacturing and Materials Processing, ed. R.K. Shah (New York: ASME, 1989), pp. 55–61.

    Google Scholar 

  17. R. Kuklinski, Ph.D. thesis, Rensselaer Polytechnic Institute (1990).

    Google Scholar 

  18. M.E. Glicksman et al., Met. Trans., 23A (1992), p. 659–667.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colucci-Mizenko, L.M., Glicksman, M.E. & Smith, R.N. Thermal recalescence and mushy zone coarsening in undercooled melts. JOM 46, 51–55 (1994). https://doi.org/10.1007/BF03222538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222538

Keywords

Navigation