Skip to main content
Log in

Genetic variability of feral and ranch American minkNeovison vison in Poland

  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

The diversity of 11 microsatellite loci was examined to estimate the genetic variability of ranch and feral American minkNeovison vison (Schreber, 1777) in Poland. Samples were collected from 10 mink farms (182 individuals) and from 5 areas in the north-eastern part of the country (87 individuals). At each examined locus the observed heterozygosity (H o) was lower than the expected heterozygosity (H e). Feral mink showed lower genetic variability than ranch mink; however, in the former group the mean value of the inbreeding coefficient (F IS=0.306) was higher than in the latter (0.242). These results demonstrated that feral and ranch mink belong to two genetically close but separate groups. Genetic differences were identified between mink colour breeds but not between animals from particular farms. The height of the modal values of ΔK indicated the presence of four genetic clusters: (1) farmed mink sapphire, (2) farmed mink standard and pastel, (3) farmed mink pearl and (4) feral mink. Assignment of mink individuals using assignment test, STRUCTURE and GeneClass 2.0. revealed that 12–16% of the feral mink group are likely to be ranch mink escapees. It may be concluded that approximately 30 years after the start of the expansion of feral mink in north-eastern Poland, this wild-living population exists without a major input of individuals bred on fur farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker A. J. and Moeed A. 1987. Rapid genetic differentiation and founder effect in colonizing populations of common mynasAcridotheres tristis. Evolution 41: 525–538.

    Article  Google Scholar 

  • Belliveau A., Farid A., O’Connell M. and Wright J. M. 1999. Assessment of genetic variability in captive and wild American mink (Mustela vison) using microsatellite markers. Canadian Journal of Animal Science 79: 7–16

    Article  Google Scholar 

  • Bevanger K. and Henriksen G. 1995. The distributional history and present status of the American mink (Mustela vison Schreber, 1777) in Norway. Annales Zoologici Fennici 32: 11–14.

    Google Scholar 

  • Bonesi L. and Palazon S. 2007. The American mink in Europe: status, impacts, and control. Biological Conservation 134: 470–483.

    Article  Google Scholar 

  • Bowman J., Kidd A. G., Gorman R. M. and Schulte-Hostedde A. I. 2007. Assessing the potential for impacts by feral mink on wild mink in Canada. Biological Conservation 139: 12–18.

    Article  Google Scholar 

  • Brzeziñski M. and Marzec M. 2003. The origin, dispersal and distribution of American minkMustela vison in Poland. Acta Theriologica 48: 505–514.

    Google Scholar 

  • Cuthbert J. H. 1973. The origin and distribution of feral mink in Scotland. Mammal Review 3: 97–103.

    Article  Google Scholar 

  • Dunstone N. 1993. The mink. T & A D Poyser Natural History, London: 1–232.

    Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Fleming M. A, Ostrander E. A. and Cook J. A. 1999. Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Molecular Ecology 8: 1352–1354.

    Article  CAS  PubMed  Google Scholar 

  • Gerell R. 1967. Dispersal and acclimatization of the mink (Mustela vison Schreber) in Sweden. Viltrevy 5: 1–38.

    Google Scholar 

  • Gilligan D. M. and Frankham R. 2003. Dynamics of genetic adaptation to captivity. Conservation Genetics 4: 189–197.

    Article  Google Scholar 

  • Golachowski M. 2002. [Ecological structure and genetic variability of American mink (Mustela vison) population in Mazurian Lakeland]. PhD thesis, Warsaw University, Warsaw: 1–41. [In Polish]

    Google Scholar 

  • Goudet J. 1995. Fstat version 1.2: a computer program to calculate F statistics. Journal of Heredity 86: 485–486.

    Article  Google Scholar 

  • Goudet J. 2002. FSTAT, a program for Windows (95 and above) to estimate and test gene diversities and Fixation indices (version 2.9.3).http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hammershoj M. 2004. Population ecology of free-ranging American minkMustela vison in Denmark. PhD thesis, National Environmental Research Institute, Kalo, Denmark: 1–30.

    Google Scholar 

  • Hammershoj M., Pertoldi C., Asferg T., Moller T. B. and Kristensen N. B. 2005. Danish free-ranging mink populations consist mainly of farm animals. Evidence from microsatellite and stable isotope analyses. Journal for Nature Conservation 13: 267–274.

    Article  Google Scholar 

  • Hammershoj M., Travis J. M. J. and Stephenson C. M. 2006. Incorporating evolutionary processes into a spatially-explicit model: exploring the consequences of mink-farm closures in Denmark. Ecography 29: 465–476.

    Article  Google Scholar 

  • Kauhala K. 1996. Distributional history of the American mink (Mustela vison) in Finland with special reference to the trends in otter (Lutra lutra) populations. Annales Zoologici Fennici 33: 283–291.

    Google Scholar 

  • Kumar S., Tamura K. and Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lisiecki H. and Sławoñ J. 1980. [Mink farming]. Third edition. PWRiL [Polish Agricultural Forestry Publisher], Warszawa: 1–309. [In Polish]

    Google Scholar 

  • Ministry of Agriculture and Rural Development 2002. [A list of the fox, raccoon dog, mink, and polecat breeding stocks]. Breeding season 2002/2003. Warszawa. [In Polish]

  • Paetkau D., Slade R., Burden M. and Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Peakall R. and Smouse P. E. 2006. GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

    Article  Google Scholar 

  • Piry S., Alapetite A., Cornuet J.-M., Paetkau D., Baudouin L. and Estoup A. 2004. GeneClass2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536–539.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000. Interference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rannala B. and Mountain J. L. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94: 9197–9201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M. and Rousset F. 1995. Genepop (Version-1.2) — population-genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.

    Article  Google Scholar 

  • Rice W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225

    Article  Google Scholar 

  • Romanowski J., Kaszuba S. and Kożniewski P. 1984. [New data on the occurrence of mink (Mammalia, Mustelidae) in Poland]. Przegląd Zoologiczny 28: 221–223. [In Polish]

    Google Scholar 

  • Ruprecht A. L. 1996. Materials to the distribution of the members of the subgenusLutreola Wagner, 1841 (Carnivora: Mustelidae) in Poland. Przegląd Zoologiczny 40: 223–233. [In Polish]

    Google Scholar 

  • Ruprecht A. L., Buchalczyk T. and Wójcik J. M. 1983. The occurrence of minks (Mammalia: Mustelidae) in Poland. Przegląd Zoologiczny 27: 87–99. [In Polish]

    Google Scholar 

  • Sidorovich V. E. 1993. Reproductive plasticity of the American minkMustela vison in Belarus. Acta Theriologica 38: 175–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin BrzeziÑski.

Additional information

Associate editor was Krzysztof Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalska-Parda, A., BrzeziÑski, M., Zalewski, A. et al. Genetic variability of feral and ranch American minkNeovison vison in Poland. Acta Theriol 54, 1–10 (2009). https://doi.org/10.1007/BF03193132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03193132

Key words

Navigation