Skip to main content
Log in

Use of bile correction factors for allometric prediction of human pharmacokinetic parameters of torcetrapib, a facile cholesteryl ester transfer protein inhibitor

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Torcetrapib was the lead candidate belonging to the class of cholesteryl ester transfer protein (CETP) inhibitor which was being developed for the management of cardiovascular risk factors by raising HDL. The availability of pharmacokinetic parameters (clearance: CL/F, volume of distribution: Vd/F, elimination rate constant: Kel and elimination half-life: t1/2) in mice, rats and monkeys, enabled the prediction of human parameter values using the well accepted tool of allometry. Although allometry work has been largely restricted to intravenous drugs, the present case of torcetrapib showed that allometry may be equally applicable to oral route. Simple allometry appeared to markedly inflate the human parameters for CL/F, Vd/F, Kel and t1/2. However, the application of bile correction factors provided allometric equations of 0.2486W0.877 (R2=0.9416), 1.4723W1.8263 (R2=0.8873), 0.1685W−095 (R2=0.828) and 4.1044W0.9493 (R2=0.9337) for CL/F, Vd/F, Kel, and t1/2, rendering a closer prediction of human parameter values. Accordingly, the predicted (observed) values of torcetrapib were 10.3 L/h (15.8 L/h), 3449 L (4810 L), 0.00298 h−1 (0.00328 h−1) and 211 h (231 h) for CL/F, Vd/F, Kel and t1/2, respectively. In summary, the data suggested that allometry tool with appropriate bile correction factors could be effectively used in a prospective manner for other orally administered CETP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barter P.J., Brewer H.B., Chapman J., Hennekens C.H., Radar D.J., Tall A.R. (2003). Cholesteryl ester transfer proteins: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vase. Biol., 23, 160–167.

    Article  CAS  Google Scholar 

  2. Tall A.R. (1993). Plasma cholesteryl ester transfer proteins. J. Lipid Res., 34, 1255–1274.

    PubMed  CAS  Google Scholar 

  3. Hesler C.B., Swenson T.L., Tall A.R. (1987). Purification and characterization of a human plasma cholesteryl ester transfer protein. J. Biol. Chem., 262, 2275–2282

    PubMed  CAS  Google Scholar 

  4. Barter P.J., Rye K.A. (2001). Cholesteryl ester transfer protein, high density lipoprotein and arterial disease. Curr. Opin. Lipidol., 12, 377–382.

    Article  PubMed  CAS  Google Scholar 

  5. McPherson R., Mann C.J., Tall A.R., Hogue M., Martin L., Milne M.W, Marcel Y.L. (1991). Plasma concentrations of cholesteryl ester transfer protein in hyperlipo-proteinemia. Relation to cholesteryl ester transfer protein activity and other lipoprotein variables. Arterioscler. Thromb., 11, 797–804.

    PubMed  CAS  Google Scholar 

  6. Nofer J.R., Kehrel B., Fobker M., Levkau B., Assmann G., von Eckardstein A. (2002). HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis, 161, 1–6.

    Article  PubMed  CAS  Google Scholar 

  7. Sacks F.M. (2002). Expert Group on HDL Cholesterol. The role of high density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: expert group recommendations. Am. J. Cardiol., 90, 139–143.

    Article  PubMed  CAS  Google Scholar 

  8. Von Eckardstein A., Nofer J.R., Assmann G. (2001). High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler. Thromb. Vase. Biol., 21, 13–27.

    Google Scholar 

  9. Gotto A.M. Jr. (2001). Low high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report. Circulation, 103, 2213–2218.

    PubMed  CAS  Google Scholar 

  10. Krishna R., Anderson M.S., Bergman A.J., Jin B., Fallon M., Cote J., Rosko K, Chavez-Eng C, Lutz R, Bloomfield D.M., Gutierrez M., Doherty J., Bieberdorf F., Chodakewitz J., Gottesdiener K.M., Wagner J.A. (2007). Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals; two double-blind, randomised placebo-controlled studies. Lancet, 370, 1907–1924.

    Article  PubMed  CAS  Google Scholar 

  11. de Grooth G.J., Kuivenhoven J.A., Stalenhoef A.F., de Graaf J., Zwinderman A.H., Posma J.L., van Toi A., Kastelein J.J. (2002). Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation, 105, 2159–2165.

    Article  PubMed  CAS  Google Scholar 

  12. Howes L.G., Kostner K. (2007). The withdrawal of torcetrapib from drug development: implications for the future of drugs that alter HDL metabolism. Expert Opin. Investig. Drugs, 16, 1509–1516.

    Article  PubMed  CAS  Google Scholar 

  13. Tanne J.H. Pfizer stops clinical trials of heart drug. (2006). Br. Med. J., 333, 1237.

    Article  Google Scholar 

  14. Krishna R., Bergman A.J., Jin B., Fallon M., Cote J., Van Hoydonck P., Laethem T., Gendrano I.N. 3rd., Van Dyck K., Hilliard D., Laterza O., Snyder K., Chavez-Eng C., Lutz R., Chen J., Bloomfield D.M., De Smet M., Van Bortel L.M., Gutierrez M., Al-Huniti N., Dykstra K., Gottesdiener K.M., Wagner J.A. (2008). Multiple-dose pharmacodynamics of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Clin. Pharmacol. Ther., 84, 679–683.

    Article  PubMed  CAS  Google Scholar 

  15. Prakash C., Chen W., Rossulek M., Johnson K., Zhang C., O’Connell T, Potchoiba M., Dalvie D. (2008). Metabolism, pharmacokinetics, and excretion of a cholesteryl ester transfer protein inhibitor, torcetrapib, in rats, monkeys, and mice: characterization of unusual and novel metabolites by high-resolution liquid chromatography-tandem mass spectrometry and1H nuclear magnetic resonance. Drug Metab. Dispos., 36, 2064–2079.

    Article  PubMed  CAS  Google Scholar 

  16. Dalvie D., Chen W., Zhang C., Vaz A.D., Smolarek T.A., Cox L.M., Lin J., Obach R.S. (2008). Pharmacokinetics, metabolism and excretion of torcetrapib, a CETP inhibitor, in humans. Drug Metab. Dispos., 36, 2185–2198.

    Article  PubMed  CAS  Google Scholar 

  17. Boxembaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. (1982). J. Pharmacokinet. Biopharm., 10, 201–227.

    Article  Google Scholar 

  18. Mahmood I., Balian J.D. (1996). Interspecies scaling: Predicting pharmacokinetic parameters of antiepileptic drugs in humans from animals with special emphasis on clearance. J. Pharm. Sci., 85, 411–414.

    Article  PubMed  CAS  Google Scholar 

  19. Mahmood I., Yuan R. (1999). A comparative study of allometric scaling with plasma concentrations predicted by species-invariant time methods. Biopharm. Drug Dispos., 20, 137–144.

    Article  PubMed  CAS  Google Scholar 

  20. Sinha V.K., De Buck S.S., Fenu L.A., Smit J.W., Nijsen M., Guissen R.A., Van Peer A., Lavrijsen K., Mackie C.E. (2008). Predicting oral clearance in humans: How close can we get with allometry. Clin. Pharmacokinet., 47, 35–45.

    Article  PubMed  CAS  Google Scholar 

  21. Ahlawat P., Srinivas N.R. (2008). Allometric prediction of the human pharmacokinetic parameters for naveglitazar. Eur. J. Drug. Metab. Pharmacokinet., 33, 187–190.

    Article  PubMed  CAS  Google Scholar 

  22. Ahlawat P., Srinivas N.R. (2008). Interspecies scaling of a camptothecin analogue: human predictions for intravenous topotecan using animal data. Xenobiotica, 38, 1377–1385.

    Article  PubMed  CAS  Google Scholar 

  23. Bhamidipati R.K., Dravid P.V., Mullangi R., Srinivas N.R. (2004). Prediction of clinical pharmacokinetic parameters of linezolid using animal data by allometric scaling: applicability for the development of novel oxazolidinones. Xenobiotica, 34, 571–579.

    Article  PubMed  CAS  Google Scholar 

  24. Kim S.H., Kim W.B., Lee M.G. (1998). Interspecies pharmacokinetic scaling of a new carbapenem, DA-1131, in mice, rats, rabbits and dogs, and prediction of human pharmacokinetics. Biopharm. Drug Dispos., 19, 231–235.

    Article  PubMed  CAS  Google Scholar 

  25. Mehta S.C., Lu R.D. (1995). Interspecies pharmacokinetic scaling of BSH in mice, rats, rabbits, and humans. Biopharm. Drug Dispos., 16, 735–744.

    Article  PubMed  CAS  Google Scholar 

  26. Pavankumar V.V., Vinu C.A., Mullangi R., Srinivas N.R. (2007). Preclinical pharmacokinetics and interspecies scaling of ragaglitazar, a novel biliary excreted PPAR dual activator. Eur. J. Drug. Metab. Pharmacokinet., 32, 29–37.

    Article  Google Scholar 

  27. Mahmood I. (2005). Interspecies scaling of biliary excreted drugs: a comparison of several methods. J. Pharm. Sci., 94, 883–892.

    Article  PubMed  CAS  Google Scholar 

  28. Mahmood I., Sahawalla C. (2002). Interspecies scaling of biliary excreted drugs. J. Pharm. Sci., 91, 1908–1914.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullangi, R., Ahlawat, P., Trivedi, R.K. et al. Use of bile correction factors for allometric prediction of human pharmacokinetic parameters of torcetrapib, a facile cholesteryl ester transfer protein inhibitor. Eur. J. Drug Metabol. Pharmacokinet. 34, 57–63 (2009). https://doi.org/10.1007/BF03191385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191385

Key words

Navigation