Skip to main content
Log in

Microdialysis study of bromocriptine and its metabolites in rat pituitary and striatum

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Bromocriptine, a D2 receptor agonist, was administered intravenously (1 mg/kg) to anesthetized rats. Microdialysis probes were implanted in the pituitary and the striatum, known sites of D2 agonist action. Bromocriptine and its metabolites were monitored in plasma and tissue dialysates for 4 h. Drug analyses were performed using two different enzyme immunoassays specific for untransformed bromocriptine or a pool of parent drug plus hydroxylated metabolites. The metabolites/parent drug ratio for areas under the curve was 5.5. in plasma and 1 in the pituitary. No metabolites could be detected in the striatum. Bromocriptine penetration was at least 10-fold greater in the pituitary than in the striatum. The kinetics of bromocriptine in the pituitary and striatum did not parallel those in plasma, indicating that the prolonged action of bromocriptine reported by other authors may be due to slow dissociation from receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thorner M.O., Schran H.F., Evans W.S., Rogol A.D., Morris J.L., McLeod R.M. (1980): A broad spectrum of prolactin suppression by bromocriptine in hyperprolactinemic women: a study of serum prolactin and bromocriptine levels after acute and chronic administration of bromocriptine. J. Clin. Endocrinol. Metab., 50, 1026–1032.

    Article  PubMed  CAS  Google Scholar 

  2. Coleman R.J. (1992): Current drug therapy for Parkinson’s disease. A review. Drug Agings, 2, 112–124.

    CAS  Google Scholar 

  3. Kopin I.J. (1993): The pharmacology of Parkinson’s disease therapy: an update. Annu. Rev. Pharmacol. Toxicol., 32, 467–495.

    Article  Google Scholar 

  4. Katz E., Weiss B.E., Hassell A., Schran H.F., Adashi E.Y. (1991) Increased circulating levels of bromocriptine after vaginal compared with oral administration. Fertil. Steril., 55, 882–884.

    PubMed  CAS  Google Scholar 

  5. Jackson D.M., Jenkins O.F., Ross S.B. (1988): The motor effect of bromocriptine — a review. Psychopharmacology, 95, 433–446.

    Article  PubMed  CAS  Google Scholar 

  6. Markey S.P., Colburn R.W., Kopin I.J., Aamodt R.L. (1979): Distribution and excretion in the rat and monkey of [82Br]-bromocriptine. J. Pharmacol. Exp. Ther., 211, 31–35.

    PubMed  CAS  Google Scholar 

  7. Phelan D.G., Greig N.H., Rapoport S.I., Soncrant T.T. (1990): High-performance liquid chromatographic assay of bromo-criptine in rat plasma and brain. J. Chromatogr., 533, 264–270.

    Article  PubMed  CAS  Google Scholar 

  8. Westerink B.H.C., Damsma G., Rollema H., De Vries J.B., Horn A.S. (1987): Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci., 41, 1763–1776.

    Article  PubMed  CAS  Google Scholar 

  9. Benveniste H. (1989): Brain microdialysis. J. Neurochem., 52, 1667–1679.

    Article  PubMed  CAS  Google Scholar 

  10. Lonnroth P., Smith U. (1990): Microdialysis — a novel technique for clinical investigations. J. Intern. Med., 227, 295–300.

    Article  PubMed  CAS  Google Scholar 

  11. Stahle L. (1993): Microdialysis in pharmacokinetics. Eur. J. Drug. Metab. Pharmacokinet., 18, 89–96.

    PubMed  CAS  Google Scholar 

  12. Barjavel M., Sandouk P., Plotkine M., Schermann J.M. (1994): Morphine and morphine metabolites’ kinetics in the rat brain as assessed by transcortical, microdialysis. Life Sci., 55, 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  13. Sato Y., Shibanoki S., Sugahara M., Ishikawa K. (1994): Measurement and pharmacokinetic analysis of imipramine and its metabolite by brain microdialysis. J. Pharmacol., 112, 625–629.

    CAS  Google Scholar 

  14. Schaefer F., Daschner M., Veldhuis J.D., Oh J., Qadri F., Scharer K. (1994): In vivo alterations in the gonadotropin-releasing hormone pulse generator and the secretion and clearance of luteinizing hormone in the uremic castrate rat. Neuroendocrinology, 59, 285–296.

    Article  PubMed  CAS  Google Scholar 

  15. Paxinos G., Watson C. (1982). The rat brain. In: Paxinos G., Watson C. (eds) Stereotaxic Coordinates. New York: Academic Press. p. 7–12.

    Google Scholar 

  16. Rosenthaler J., Munzer H., Vosges V. (1983): Immunoassay of bromocriptine and specificity of antibody. In: Reid E., Leppard J.P. (eds) Drug Metabolite Isolation and Determination. New York: Plenum, 215–223.

    Google Scholar 

  17. Valente D., Ezan E., Créminon C., Delaforge M. et al. (1996): Enzyme immunoassays for bromocriptine and its metabolites. J. Immunoassay, 17(4), 227–320.

    Article  Google Scholar 

  18. Maurer G., Schreier E., Delaborde S., Loosli H.R., Nufer R., Shukla A.P. (1982): Fate and disposition of bromocriptine in animals and man. I: Structure elucidation of the metabolites. Eur. J. Drug. Metab. Pharmacokinet., 7, 281–292.

    Article  PubMed  CAS  Google Scholar 

  19. Maurer G., Schreier E., Delaborde S., Nufer R., Shukla A.P. (1983): Fate and disposition of bromocriptine in animals and man. II: Absorption, elimination and metabolism. Eur. J. Drug Metab. Pharmacokinet., 8, 51–62.

    Article  PubMed  CAS  Google Scholar 

  20. Pan H.T., Menacherry S., Justice J.B. (1991): Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats. J. Neurochem., 56, 1299–1306.

    Article  PubMed  CAS  Google Scholar 

  21. Woof P.D. (1981): Resumption of prolactin secretion after dopaminergic inhibition: differential effects of dopamine and its agonists. Am. J. Physiol., 240, 700–704.

    Google Scholar 

  22. Montrastruc J.L., Rascol O., Senard J.M. Rascol A. (1994): A randomised controlled study comparing bromocriptine to which levodopa was later added, with levadopa alone in previously untreated patients with Parkinson’s disease: a five year follow up. J. Neurol. Neurosurg. Psychiatry, 57, 1034–1038.

    Article  Google Scholar 

  23. Reavill C., Jenner P., Marsden C.D. (1980): Metabolite involvement in bromocriptine induced circling behaviour in rodents. J. Pharm. Pharmacol. 32, 278–284.

    PubMed  CAS  Google Scholar 

  24. Keller H.H., Da Prada M. (1979): Central dopamine agonistic activity and microsomal biotransformation of lisuride, lergotrile and bromocriptine. Life Sci., 24, 1211–1222.

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez-Lima F., Hart W.T., Rivera-Quinones C. (1987): Metabolite involvement in the behavioral effects in cats. Eur. J. Pharmacol. 141, 109–115.

    Article  PubMed  CAS  Google Scholar 

  26. Schran H.F., Tse F.L.S., Bhuta S.I. (1985): Pharmacokinetics and pharmacodynamics of bromocriptine in the rat. Biopharm. Drug. Dispos., 6, 301–311.

    Article  CAS  Google Scholar 

  27. Stahle L., Segersvard S., Ungerstedt U. (1991): A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis. J. Pharmacol. Methods, 25, 41–52.

    Article  PubMed  CAS  Google Scholar 

  28. Larsson C.I. (1991): The use of an ‘internal standard’ for control of the recovery in microdialysis. Life Sci., 49, PL73-PL78.

    Article  PubMed  CAS  Google Scholar 

  29. Menacherry S., Hubert W., Justice J.B. (1992): In vivo calibration of microdialysis probes for exogenous compounds. Anal. Chem., 64, 577–583.

    Article  PubMed  CAS  Google Scholar 

  30. Eisenberg E.J., Conzentino P., Eickhoff W.M., Cundy K.C. (1993): Pharmacokinetic measurements of drugs in lung epithelial linging fluid by microdialysis: aminoglycoside antibiotics in rat bronchi. J. Pharmacol. Methods, 29, 93–98.

    Article  CAS  Google Scholar 

  31. Meredith J.M., Levine J.E. (1992): Effects of castration on LH-RH patterns in intrahypophysial microdialysates. Brain Res., 571, 181–188.

    Article  PubMed  CAS  Google Scholar 

  32. Leleu D., Sarre S., Ebinger G., Michotte Y. (1993): J. Pharm. Biomed. Anal., 11, 577–585.

    Article  Google Scholar 

  33. Deboer P., Abercombie E.D., Heeringa M., Westerlink B.H. (1993): Differential effect of systemic administration of bromocriptine and L-DOPA on the release of acetylcholine from striatum of intact and 6-OHDA-treated rats. Brain Res., 608, 198–203.

    Article  PubMed  CAS  Google Scholar 

  34. Brannan T., Martinez-Tica J., Di-Rocco A., Yarh M.D. (1993): Low and high dose bromocriptine have different effects on striatal dopamine release: an in vivo study. J. Neural. Transm., 6, 81–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granveau-Renouf, S., Valente, D., Durocher, A. et al. Microdialysis study of bromocriptine and its metabolites in rat pituitary and striatum. Eur. J. Drug Metab. Pharmacokinet. 25, 79–84 (2000). https://doi.org/10.1007/BF03190071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190071

Keywords

Navigation