Skip to main content
Log in

Material and geometrical design for high reliability bilayer

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ceramic/metal, ceramic/ceramic, and ceramic/polymer bilayers are prepared to find the best design for a reliable material. The transparent bilayer enablesin situ observation of crack initiation. The elastic modulus of the substrate material in the bilayer is controlled from 2.35 GPa to 230 GPa by using different compositions of glass, metal, and polymer. The thickness of the ceramic coating layer is controlled from 120 μm to 5.6 mm. The surface of the coating material is abraded to control the strength and toughness. Classical cone cracks and transverse radial cracks are observed during Hertzian indentation. The crack initiations depend on not only material design parameters such as strength, toughness, and elastic modulus but also geometrical parameters such as coating thickness. Conditions for avoiding cracking are considered, in terms of the material and geometrical design parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Knight, T. F. Page and I. M. Hutchings,Thin Solid Films 177, 117 (1989).

    Article  CAS  ADS  Google Scholar 

  2. M. V. Swain and J. Mencik,Thin Solid Films 253, 204 (1994).

    Article  CAS  ADS  Google Scholar 

  3. A. Pajares, L. Wei, B. R. Lawn, N. P. Padture and C. C. Berndt,Mater. Sci. Eng. A 208, 158 (1996).

    Article  Google Scholar 

  4. A. Pajares, L. Wei, B. R. Lawn and C. C. Berndt,J. Am. Ceram. Soc. 79, 1907 (1996).

    Article  CAS  Google Scholar 

  5. H. M. Chan,Ann. Rev. Mater. Sci. 27, 249 (1997).

    Article  CAS  ADS  Google Scholar 

  6. S. J. Bennison, A. Jagota and C. A. Smith,J. Am. Ceram. Soc. 82, 1761 (1999).

    Article  CAS  Google Scholar 

  7. Y. G. Jung, S. Wuttiphan, I. M. Peterson and B. R. Lawn,J. Dent. Res. 78, 887 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. A. H. Bartlett and R. D. Maschio,J. Am. Ceram. Soc. 78, 1018 (1995).

    Article  CAS  Google Scholar 

  9. S. Wuttiphan, B. R. Lawn and N. P. Padture,J. Am. Ceram. Soc. 79, 634 (1996).

    CAS  Google Scholar 

  10. K. S. Lee, S. Wuttiphan, X. Z. Hu, S. K. Lee and B. R. Lawn,J. Am. Ceram. Soc. 81, 571 (1998).

    CAS  Google Scholar 

  11. K. S. Lee, S. K. Lee, D. K. Kim and B. R. Lawn,J. Am. Ceram. Soc. 81, 2394 (1998).

    Article  CAS  Google Scholar 

  12. H. Chai, B. R. Lawn and S. Wuttiphan,J. Mater. Res. 14, 3805 (1999).

    Article  CAS  ADS  Google Scholar 

  13. A. G. Evans and J. W. Hutchinson,Int. J. Solids. Struct. 20, 455 (1984).

    Article  Google Scholar 

  14. J. W. Hutchinson and Z. Suo,Adv. Appl. Mech. 29, 64 (1991).

    Google Scholar 

  15. H. Zhao, X. Z. Hu, M. B. Bush and B. R. Lawn,J. Mater. Res. 15, 676 (2000).

    Article  CAS  ADS  Google Scholar 

  16. B. R. Lawn,J. Am. Ceram. Soc. 81, 1977 (1998).

    Article  CAS  Google Scholar 

  17. D. B. Marshall, T. Noma and A. G. Evans,J. Am. Ceram. Soc. 65, C175 (1982).

    Article  CAS  Google Scholar 

  18. B. R. Lawn,Fracture of Brittle Solids, Cambridge Univ. Press, Cambridge (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.S., Woo, S.K., Han, M.H. et al. Material and geometrical design for high reliability bilayer. Met. Mater. Int. 7, 531–537 (2001). https://doi.org/10.1007/BF03179250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179250

Keywords

Navigation