Skip to main content
Log in

Determination of differential quantum yields in solution by electron paramagnetic resonance spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Quantitative kinetic studies on the photochemistry of paramagnetic species in solution may be carried out by electron paramagnetic resonance (EPR) spectroscopy. A cylindrical cell can be used as photochemical reactor, but the internal diameter should be less than 1.7 mm in order to achieve the resonance of an aqueous sample in an X-band (9–10 GHz) spectrometer. In this paper we present a detailed analysis of the fractions of incident light that are reflected, transmitted and absorbed by a liquid solution in a quartz cylindrical cell placed in the optical cavity of an X-band EPR spectrometer. Since the photolysis cell is irradiated perpendicularly to its axis, variable angles of incidence have been considered to calculate the transmission and reflection coefficients from Fresnel equations. Polarization of light has been also taken into account in the evaluation of the coefficients. The procedure proposed here is adequate for the evaluation of the absorbed light in the determination of quantum yields. The continuous photolysis at 366 nm of symmetric chlorine dioxide (OCIO) in aqueous solution was considered as an example. The initial differential quantum yield obtained for OCIO photodecomposition in aqueous solution was Θ366 = 0.55 ± 0.04.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiany J.J.: Bruker Rep.148, 14–15 (2000)

    Google Scholar 

  2. Hunt R.E., Hill T.L.: J. Chem. Phys.15, 111–113 (1947)

    Article  ADS  Google Scholar 

  3. Dignam M.J., Le Roy D.J.: J. Chem. Phys.26, 964–965 (1957)

    Article  ADS  Google Scholar 

  4. Davies J.A., Manning P.P.: J. Am. Chem. Soc.79, 5148–5151 (1957)

    Article  Google Scholar 

  5. Dunn R.C., Flanders B.N., Vaida V., Simon J.D.: Spectrochim. Acta48A, 1293–1301 (1992)

    Google Scholar 

  6. Zhang J., Aker P.: J. Phys. Chem.98, 765–767 (1994)

    Article  Google Scholar 

  7. Bishenden E., Donaldson D.J.: J. Chem. Phys.101, 9565–9572 (1994)

    Article  ADS  Google Scholar 

  8. Vaida V., Goudjil K., Simon J.D., Flanders B.N.: J. Mol. Liq.61, 133–152 (1994)

    Article  Google Scholar 

  9. Vaida V., Simon J.D.: Science268, 1443–1448 (1995)

    Article  ADS  Google Scholar 

  10. Roth M., Maul C., Gericke K.: J. Chem. Phys.107, 10582–10591 (1997)

    Article  ADS  Google Scholar 

  11. Thøgersen J., Jepsen P.U., Thomsen C.L., Poulsen J.Aa., Byberg J.R., Keiding S.R.: J. Phys. Chem. A101, 3317–3323 (1997)

    Article  Google Scholar 

  12. Hayes S.C., Philpott M.P., Mayer S.G., Reid P.J.: J. Phys. Chem. A103, 5534–5546 (1999)

    Article  Google Scholar 

  13. Dunn R.C., Simon J.D.: J. Am. Chem. Soc.114, 4856–4860 (1992)

    Article  Google Scholar 

  14. Thøgersen J., Thomsen C.L., Poulsen J.Aa., Keiding S.R.: J. Phys. Chem. A102, 4186–4191 (1998)

    Article  Google Scholar 

  15. Mialocq J.C., Barat F., Gilles L., Hickel B., Lesigne B.: J. Phys. Chem.77, 742–749 (1973)

    Article  Google Scholar 

  16. Nagai Y., Goodeve C.F.: Trans. Faraday Soc.27, 508–515 (1931)

    Article  Google Scholar 

  17. Ingols R.S., Ridenour G.M.: J. AWWA1948, 1207–1227.

  18. Adrian F.J., Bohandy J., Kim B.F.: J. Chem. Phys.85, 2692 (1986)

    Article  ADS  Google Scholar 

  19. Kuhn H.J., Braslavsky S.E., Schmidt R.: Pure Appl. Chem.61, 205 (1989)

    Article  Google Scholar 

  20. Lee J., Seliger H.H.: J. Chem. Phys.40, 519–523 (1964)

    Article  ADS  Google Scholar 

  21. Kirk A.D., Namasivayam C.: Anal. Chem.55, 2429–2431 (1983)

    Article  Google Scholar 

  22. Lide D.R. (ed.): Handbook of Chemistry and Physics 73rd edn., pp. 10–310. Boca Raton: CRC Press 1993.

    Google Scholar 

  23. Ditchburn R.W. (ed.): Light, 3rd edn. chapt. 15. London: Academic Press 1982.

    Google Scholar 

  24. Steiner E. (ed.): The Chemistry Maths Book. New York: Oxford University Press 1997.

    Google Scholar 

  25. Bowen E.J., Cheung W.M.: J. Chem. Soc.1932, 1200–1207.

  26. Buxton G.V., Williams R.J.: Proc. Chem. Soc.1962, 141–142.

  27. Churio M.S., Brusa M.A., Perissinotti L.J., Ghibaudi E., Coronel M., Colussi A.J.: Chem. Phys. Lett.232, 237–241 (1995)

    Article  ADS  Google Scholar 

  28. Brusa M.A., Perissinotti L.J., Churio M.S., Colussi A.J.: J. Photochem. Photobiol. A101, 105–111 (1996)

    Article  Google Scholar 

  29. Logan S.R.: J. Chem. Soc. Faraday Trans.86, 61–63 (1990)

    Article  Google Scholar 

  30. Yordanov N.D.: Appl. Magn. Reson.6, 241–257 (1994)

    Article  Google Scholar 

  31. Yordanov N.D., Ivanova M.: Appl. Magn. Reson.6, 347–357 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroga, S.L., Churio, M.S. & Perissinotti, L.J. Determination of differential quantum yields in solution by electron paramagnetic resonance spectroscopy. Appl Magn Reson 22, 115–131 (2002). https://doi.org/10.1007/BF03170527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03170527

Keywords

Navigation