Skip to main content
Log in

Overexpression of GRK2 in alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Heterotrimeric guanine nucleotide-binding (G) protein-coupled receptor kinases (GRKs) are cytosolic proteins that are known to contribute to the adaptation of the heptahelical G protein-coupled receptors (GPCRs) and to regulate downstream signals through these receptors. GPCRs mediate the action of messengers that are key modulators of cardiac and vascular cell function, such as growth and differentiation. GRKs are members of a multigene family, which are classified into three subfamilies and are found in cardiac, vascular and cerebral tissues. Increasing evidence strongly supports the hypothesis that vascular damage is an early contributor to the development of Alzheimer disease (AD) and/or other pathology that can mimic human AD. Based on this hypothesis, and since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium and elsewhere, we explored cellular and subcellular localization by immunoreactivity of G protein-coupled receptor kinase 2 (GRK2), also known as ?-adrenergic receptor kinase-1(?ARK1), in the early pathogenesis of AD and in ischemia reperfusion injury models of brain hypoperfusion. In the present study, we used the two-vessel carotid artery occlusion model, namely the 2-VO system that results in chronic brain hypoperfusion (CBH) and mimics mild cognitive impairment (MCI) and vascular changes in AD pathology. Our findings demonstrate the early overexpression of GRK2 member kinase in the cerebrovasculature, especially endothelial cells (EC) following CBH, as well as in select cells from human AD tissue. We found a significant increase in GRK2 immunoreactivity in the EC of AD patients and after CBH, which preceded any amyloid deposition. Since GRK2 activity is associated with certain compensatory changes in brain cellular compartments and in ischemic cardiac tissue, our findings suggest that chronic hypoperfusion initiates oxidative stress in these conditions and appears to be the main initiating injury stimulus for disruption of brain and cerebrovascular homeostasis and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliev G, D Seyidova, ML Neal, J Shi, BT Lamb, SL Siedlak, HV Vinters, E Head, G Perry, JC LaManna, RP Friedland and CV Cotman (2002a) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice.Ann. NYAcad. Sci. 977, 45–64.

    Article  CAS  Google Scholar 

  • Aliev G, MA Smith, D Seyidova, ML Neal, BT Lamb, A Nunomura, EK Gasimov, HV Vinters, G Perry, JC LaManna and RP Friedland (2002b) The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer’s disease.Brain Pathol. 12, 21–35.

    PubMed  CAS  Google Scholar 

  • Aliev G, MA Smith, ME Obrenovich, JC de la Torre and G Perry (2003) Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease.Neurotoxicity Res. 5, 491–504.

    Article  Google Scholar 

  • Aliev G, MA Smith, JC de la Torre and G Perry (2004) Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease.Mitochondrion 4, 649–663.

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Y Maruyama, M Nishida, S Tanabe, S Takagahara, T Kozasa, Y Mori, T Nagao and H Kurose (2003) Differential requirement of G alpha12, G alpha13, G alphaq and G beta gamma for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation.Mol. Pharmacol. 63, 478–488.

    Article  PubMed  CAS  Google Scholar 

  • Arriza JL, TM Dawson, RB Simerly, LJ Martin, MG Caron, SH Snyder and RJ Lefkowitz (1992) The G-protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain.J. Neurosci. 12, 4045–4055.

    PubMed  CAS  Google Scholar 

  • Boucher M, S Nim, C de Montigny and G Rousseau (2004) Alterations of beta-adrenoceptor responsiveness in postischemic myocardium after 72 h of reperfusion.Eur. J. Pharmacol. 495, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Carman CV, MP Lisanti and JL Benovic (1999) Regulation of G protein-coupled receptor kinases by caveolin.J. Biol. Chem. 274, 8858–8864.

    Article  PubMed  CAS  Google Scholar 

  • Choi DJ, WJ Koch, JJ Hunter and HA Rockman (1997) Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase.J. Biol. Chem. 272, 17223–17229.

    Article  PubMed  CAS  Google Scholar 

  • de la Torre JC and G Aliev (2005) Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes.J. Cereb. Blood Flow Metab. 25, 663–672.

    Article  PubMed  CAS  Google Scholar 

  • de la Torre JC and T Fortin (1991) Partial or global rat brain ischemia. The SCOT model.Brain Res. Bull. 26, 365–372.

    Article  PubMed  Google Scholar 

  • de la Torre JC, J Saunders, T Fortin, K Butler and M Richard (1991) Return of ATP/PCr and EEG after 75 minutes of global brain ischemia.Brain Res. 542, 71–76.

    Article  PubMed  Google Scholar 

  • de la Torre JC, T Fortin, GA Park, KS Butler, P Kozlowski, BA Pappas, H de Socarraz, JK Saunders and MT Richard (1992a) Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats.Brain Res. 582, 186–195.

    Article  PubMed  Google Scholar 

  • de la Torre JC, T Fortin, GA Park, JK Saunders, P Kozlowski, K Butler, H de Socarraz, BA Pappas and M Richard (1992b) Aged but not young rats develop metabolic, memory deficits after chronic brain ischaemia.Neurol. Res. 14, 177–180.

    PubMed  Google Scholar 

  • de la Torre JC, K Butler, P Kozlowski, T Fortin and JK Saunders (1995) Correlates between nuclear magnetic resonance spectroscopy, diffusion weighted imaging, and CA1 morphometry following chronic brain ischemia.J. Neurosci. Res. 41, 238–245.

    Article  PubMed  Google Scholar 

  • Elorza A, P Penela, S Sarnago and F Mayor Jr (2003) MAPKdependent degradation of G protein-coupled receptor kinase 2.J. Biol. Chem. 278, 29164–29173.

    Article  PubMed  CAS  Google Scholar 

  • Erdtmann-Vourliotis M, P Mayer, S Ammon, U Riechertand and V Hollt (2001) Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain.Mol. Brain Res. 95, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Feldman RD (2002) Deactivation of vasodilator responses by GRK2 overexpression: a mechanism or the mechanism forhypertension?Mol. Pharmacol. 61, 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.Pharmacol. Rev. 53, 1–24.

    PubMed  CAS  Google Scholar 

  • Fredericks ZL, JA Pitcher and RJ Lefkowitz (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor.J. Biol. Chem. 271, 13796–13803.

    Article  PubMed  CAS  Google Scholar 

  • Freedman NJ, AS Ament, M Oppermann, RH Stoffel, ST Exum and RJ Lefkowitz (1997) Phosphorylation and desensitization of human endothelin A and B receptors. Evidence for G proteincoupled receptor kinase specificity.J. Biol. Chem. 272, 17734–17734.

    Article  PubMed  CAS  Google Scholar 

  • Ge J and NM Barnes (1996) Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders.Eur. J. Pharmacol. 22, 299–306.

    Article  Google Scholar 

  • Haga K, H Ogawa, T Haga and H Murofushi (1998) GTP-bindingprotein- coupled receptor kinase 2 (GRK2) binds and phosphorylates tubulin.Eur. J. Biochem. 255, 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Hagen SA, AL Kondyra, HP Grocott, H El-Moalem, D Bainbridge, JP Mathew, MF Newman, JG Reves, DA Schwinn and MM Kwatra (2003) Cardiopulmonary bypass decreases G proteincoupled receptor kinase activity and expression in human peripheral blood mononuclear cells.Anesthesiology 98, 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Harris CA, TT Chuang and CA Scorer (2001) Expression of GRK2 is increased in the left ventricles of cardiomyopathic hamsters.Basic Res. Cardiol. 96, 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Hata JA and WJ Koch (2003) Phosphorylation of G protein-coupled receptors: GPCR kinases in heart disease.Mol. Interv. 3, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, G Aliev, A Nunomura, H Fujioka, RL Russell, CS Atwood, AB Johnson, Y Kress, HV Vinters, M Tabaton, S Shimohama, AD Cash, SL Siedlak, PL Harris, PK Jones, RB Petersen, G Perry and MA Smith (2001) Mitochondrial abnormalities in Alzheimer’s disease.J. Neurosci. 21, 3017–3023.

    PubMed  CAS  Google Scholar 

  • Hu JH, H Zhang, R Wagey, C Krieger and SL Pelech (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord.J. Neurochem. 85, 432–442.

    Article  PubMed  CAS  Google Scholar 

  • Iaccarino G and WJ Koch (2003) Transgenic mice targeting the heart unveil G protein-coupled receptor kinases as therapeutic targets.Assay Drug Dev. Technol. 1, 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Iaccarino G, E Barbato, E Cipolletta, V De Amicis, KB Margulies, D Leosco, B Trimarco and WJ Koch (2005) Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure.Eur. Heart J. 26, 1752–1758.

    Article  PubMed  CAS  Google Scholar 

  • Iacovelli L, R Franchetti, D Grisolia and A De Blasi (1999) Selective regulation of G protein-coupled receptor-mediated signaling by G protein-coupled receptor kinase 2 in FRTL-5 cells: analysis of thyrotropin, alpha(1B)-adrenergic, and A(1) adenosine receptormediated responses.Mol. Pharmacol. 56, 316–324.

    PubMed  CAS  Google Scholar 

  • Kwon S, LH Fang, B Kim, TS Ha, SJ Lee and HY Ahn (2004) p38 Mitogen-activated protein kinase regulates vasoconstriction in spontaneously hypertensive rats.J. Pharmacol. Sci. 95, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Lea P, MT Faden and IA Faden (2003) Modulation of metabotropic glutamate receptors as potential treatment for acute and chronic neurodegenerative disorders.Drug News Perspect. 16, 513–522.

    Article  PubMed  CAS  Google Scholar 

  • Liu S, RT Premont, CD Kontos, S Zhu and DC Rockey (2003) Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt.J. Biol. Chem. 278, 49929–49935.

    Article  PubMed  CAS  Google Scholar 

  • Liu S, RT Premont, CD Kontos, S Zhu and DC Rockey (2005) A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension.Nat. Med. 11, 952–958.

    Article  PubMed  CAS  Google Scholar 

  • Lodowski DT, JA Pitcher, WD Capel, RJ Lefkowitz and JJ Tesmer (2003) Keeping G proteins at bay: a complex between G pro tein-coupled receptor kinase 2 and G betagamma.Science 300, 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  • Mayor F Jr, P Penela and A Ruiz-Gomez (1998) Role of G proteincoupled receptor kinase 2 and arrestins in beta-adrenergic receptor internalization.Trends Cardiovasc. Med. 8, 234–240.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, G Perry, G Aliev, K Hirai, A Takeda, EK Balraj, PK Jones, H Ghanbari, T Wataya, S Shimohama, S Chiba, CS Atwood, RB Petersen and MA Smith (2001) Oxidative damage is the earliest event in Alzheimer disease.J. Neuropathol. Exp. Neurol. 60, 759–767.

    PubMed  CAS  Google Scholar 

  • Obrenovich ME, AK Raina, O Ogawa, CS Atwood, L Morelli and MA Smith (2005)Cell-cycle Mechanisms in Neuronal Death: a New Beginning or a Final exit? (Nicoletti, Ferdinando, Agata Copani, Eds.) (Landes Bioscience) 8, 1-15.

  • Pappas BA, JC de la Torre, CM Davidson, MT Keyes and T Fortin (1996) Chronic reduction of cerebral blood flow in the adult rat: late-emerging CA1 cell loss and memory dysfunction.Brain Res. 708, 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Paris D, J Humphrey, A Quadros, N Patel, R Crescentini, F Crawford and M Mullan (2003) Vasoactive effects of Abeta in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer’s disease: role of inflammation.Neurol. Res. 25, 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Penela P, M Alvarez-Dolado, A Munoz and F Mayor Jr (2000) Expression patterns of the regulatory proteins G protein-coupled receptor kinase 2 and beta-arrestin 1 during rat postnatal brain development: effect of hypothyroidism.Eur. J. Biochem. 267, 4390–4396.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, RA Hall, Y Daaka, J Zhang, SS Ferguson, S Hester, S Miller, MG Caron, RJ Lefkowitz and LS Barak (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin.J. Biol. Chem. 273, 12316–12324.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, JJ Tesmer, JL Freeman, WD Capel, WC Stone and RJ Lefkowitz (1999) Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases.J. Biol. Chem. 274, 34531–34534.

    Article  PubMed  CAS  Google Scholar 

  • Raina AK, A Hochman, X Zhu, CA Rottkamp, A Nunomura, SL Siedlak, H Boux, RJ Castellani, G Perry and MA Smith (2001) Abortive apoptosis in Alzheimer’s disease.Acta Neuropathol. (Berl.) 101, 305–310.

    CAS  Google Scholar 

  • Ramos-Ruiz R, P Penela, RB Penn and F Mayor Jr (2000) Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells.Circulation 101, 2083–2089.

    PubMed  CAS  Google Scholar 

  • Robinson SR and GM Bishop (2002) Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease.Neurobiol. Aging 23, 1051–1072.

    Article  PubMed  CAS  Google Scholar 

  • Roder HM, PA Eden and VM Ingram (1993) Brain protein kinase PK40erk converts TAU into a PHF-like form as found in Alzheimer’s disease.Biochem. Biophys. Res. Commun. 193, 639–647.

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, T Miyauchi, M Kobayashi, I Yamaguchi, K Goto and Y Sugishita (1996) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure.Nature 384, 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Sallese M, L Salvatore, E D’Urbano, G Sala, M Storto, T Launey, F Nicoletti, T Knopfel and A De Blasi (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1.FASEB J. 14, 2569–2580.

    Article  PubMed  CAS  Google Scholar 

  • Sarnago S, A Elorza and F Mayor Jr (1999) Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase.J. Biol. Chem. 274, 34411–34416.

    Article  PubMed  CAS  Google Scholar 

  • Suo Z, M Wu, BA Citron, GT Wong and BW Festoff(2004) Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer’s disease: an association with early beta-amyloid accumulation.J. Neurosci. 24, 3444–3452.

    Article  PubMed  CAS  Google Scholar 

  • Thebaud B, F Ladha, ED Michelakis, M Sawicka, G Thurston, F Eaton, K Hashimoto, G Harry, A Haromy, G Korbutt and SL Archer (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization.Circulation 112, 2477–2486.

    Article  PubMed  CAS  Google Scholar 

  • Theilade J, C Strom, T Christiansen, S Haunso and SP Sheikh (2003) Differential G protein receptor kinase 2 expression in compensated hypertrophy and heart failure after myocardial infarction in the rat.Basic Res. Cardiol. 98, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, K Sako, S Yura and Y Yonemasu (1992) Cerebral blood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats.Exp. Brain Res. 89, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Ungerer M, K Kessebohm, K Kronsbein, MJ Lohse and G Richardt (1996) Activation of beta-adrenergic receptor kinase during myocardial ischemia.Circ. Res. 79, 455–460.

    PubMed  CAS  Google Scholar 

  • Willets JM, RA Challiss and SR Nahorski (2003) Non-visual GRKs: are we seeing the whole picture?Trends Pharmacol. Sci. 24, 626–633.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, K Haga and T Haga (2003) Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in betatubulin.Eur. J. Biochem. 270, 1154–1163.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, HG Lee, AK Raina, G Perry and MA Smith (2002) The role of mitogen-activated protein kinase pathways in Alzheimer’s disease.Neurosignals 11, 270–281.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, MA Smith, G Perry and G Aliev (2004) Mitochondrial failures in Alzheimer’s disease.Am. J. Alzheimer’s Dis. Demen. 19, 345–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gjumrakch Aliev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obrenovich, M.E., Smith, M.A., Siedlak, S.L. et al. Overexpression of GRK2 in alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. neurotox res 10, 43–56 (2006). https://doi.org/10.1007/BF03033333

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033333

Keywords

Navigation