Skip to main content
Log in

Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+-induced toxicity in PC12 cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dopaminergic cell loss in the mesencephalic substantia nigra is the hallmark of Parkinson’s disease and may be associated with abnormal oxidative metabolic activity. However, the delicate balance underlying dopamine decline and oxidative stress is still a matter of debate. The aim of this study was to analyze the possible modulation of dopamine D2 agonists and antagonists on MPP+ (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion) -induced cellular death in differentiated and undifferentiated PC12 cells. Using colorimetric assays, western blots and reverse transcriptase-PCR, we demonstrated that two D2 agonists, bromocriptine and quinpirole, consistently increased MPP+-induced cytotoxicity in both differentiated and undifferentiated PC12 cells, whereas D2 antagonists did not modulate cell death. However, this increase in cellular death was reversed when bromocriptine or quinpirole were used in the presence of D2 antagonists. On the other hand, 1-2-[bis-(4-fluorophenyl)methoxy]ethyl-4-(3-phenylpropyl)piperazine (GBR 12909) a potent inhibitor of the dopamine transporter, partially reversed MPP+-induced cellular death and completely abolished the increase of cellular death induced by bromocriptine. Dopamine agonists and antagonists also modulate the expression of the dopamine transporter in PC12 cells; in particular, bromocriptine may alter MPP+ uptake by increasing DAT expression. We also show that, in our cellular paradigm, D2 receptor mRNA levels are more abundant that D3 mRNA levels and MPP+ and/or bromocriptine could not modulate D2 gene expression while D3 gene expression clearly decreased after MPP+ and/or bromocriptine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JD Jr and IN Odunze (1991) Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain?Biochem. Pharmacol. 41, 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  • Akaneya Y, M Takahashi and H Hatanaka (1995) Involvement of free radicals in MPP+ neurotoxicity against rat dopaminergic neurons in culture.Neurosci. Lett. 193, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Amantea D, R Russo, G Bagetta and MT Corasaniti (2005) From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens.Pharmacol. Res. 52, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Bougria M, J Vitorica, J Cano and A Machado (1995) Implication of dopamine transporter system on 1-methyl-4-phenylpyridinium and rotenone effect in striatal synaptosomes.Eur. J. Pharmacol. 291, 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Bunzow JR, HH Van Tol, DK Grandy, P Albert, J Salon, M Christie, CA Machida, KA Neve and O Civelli (1988) Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • Cassarino DS, CP Fall, TS Smith and JP Bennett Jr (1998) Pramipexole reduces reactive oxygen species productionin vivo andin vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion.J. Neurochem. 71, 295–301.

    PubMed  CAS  Google Scholar 

  • Chiba K, A Trevor and N Castagnoli Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase.Biochem. Biophys. Res. Commun. 120, 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Chu E, J Chu, RR Socci and TC Chu (2004) 7-OH-DPAT-induced inhibition of norepinephrine release in PC12 cells.Pharmacology 70, 130–139.

    Article  PubMed  CAS  Google Scholar 

  • Coronas V, S Krantic, F Jourdan and E Moyse (1999) Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographic approach.Neuroscience 90, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Cossette LJ, I Gaumond and MG Martinoli (2002) Combined effect of xenoestrogens and growth factors in two estrogen-responsive cell lines.Endocrine 18, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Damon DH, PA D’Amore and JA Wagner (1990) Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC 12 cells via both protein kinase C- and cAMP-independent mechanisms.J. Cell. Biol. 110, 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  • Danzeisen R, B Schwalenstoecker, F Gillardon, E Buerger, V Krzykalla, K Klinder, L Schild, B Hengerer, AC Ludolph, C Dorner-Ciossek and L Kussmaul (2006) Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-L-propylamino-benzathiazole dihydrochloride].J. Pharmacol. Exp. Ther. 316, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Decker T and ML Lohmann-Matthes (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity.J. Immunol. Meth. 115, 61–69.

    Article  CAS  Google Scholar 

  • Du Y, RC Dodel, KR Bales, R Jemmerson, E Hamilton-Byrd and SM Paul (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons.J. Neurochem. 69, 1382–1388.

    PubMed  CAS  Google Scholar 

  • Dudley AJ, K Bleasby and CD Brown (2000) The organic cation transporter OCT2 mediates the uptake of beta-adrenoceptor antagonists across the apical membrane of renal LLC-PK(1) cell monolayers.Br. J. Pharmacol. 131, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Fall CP and JP Bennett Jr (1999) Characterization and time course of MPP+ -induced apoptosis in human SH-SY5Y neuroblastoma cells.J. Neurosci. Res. 55, 620–628.

    Article  PubMed  CAS  Google Scholar 

  • Fornai F, G Battaglia, M Gesi, F Orzi, F Nicoletti and S Ruggieri (2001) Dose-dependent protective effects of apomorphine against methamphetamine-induced nigrostriatal damage.Brain Res. 898, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Gagne B, S Gelinas, G Bureau, B Lagace, C Ramassamy, K Chiasson, B Valastro and MG Martinoli (2003) Effects of estradiol, phytoestrogens, and Ginkgo biloba extracts against 1-methyl-4-phenyl-pyridine-induced oxidative stress.Endocrine 21, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Gelinas S and MG Martinoli (2002) Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells.J. Neurosci. Res. 70, 90–96.

    Article  PubMed  CAS  Google Scholar 

  • Gelinas S, G Bureau, B Valastro, G Massicotte, F Cicchetti, K Chiasson, B Gagne, J Blanchet and MG Martinoli (2004) Alpha and beta estradiol protect neuronal but not native PC 12 cells from paraquat-induced oxidative stress.Neurotoxicity Res. 6, 141–148.

    Google Scholar 

  • Geurts M, E Hermans, J Cumps and JM Maloteaux (1999) Dopamine receptor-modulated [35S]GTPgammaS binding in striatum of 6-hydroxydopamine-lesioned rats.Brain Res. 841, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Gibb WR, B Costall, AM Domeney, ME Kelly and RJ Naylor (1988) The histological effects of intracerebral injection or infusion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MPP+ (1-methyl-4-phenylpyridinium) in rat and mouse.Brain Res. 461, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Polo RA, A Mora, N Clemente, G Sabio, F Centeno, G Soler and JM Fuentes (2001) Mechanisms of MPP(+) incorporation into cerebellar granule cells.Brain Res. Bull. 56, 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Greene LA and AS Tischler (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • Grosset K, F Needleman, G Macphee and D Grosset (2004) Switching from ergot to nonergot dopamine agonists in Parkinson’s disease: a clinical series and five-drug dose conversion table.Mov. Disord. 19, 1370–1374.

    Article  PubMed  Google Scholar 

  • Grunblatt E, S Mandel, T Berkuzki and MB Youdim (1999a) Apomorphine protects against MPTP-induced neurotoxicity in mice.Mov. Disord. 14, 612–618.

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, S Mandel, M Gassen and MB Youdim (1999b) Potent neuroprotective and antioxidant activity of apomorphine in MPTP and 6-hydroxydopamine induced neurotoxicity.J. Neural Transm. Suppl. 55, 57–70.

    PubMed  CAS  Google Scholar 

  • Gu M, MM Iravani, JM Cooper, D King, P Jenner and AH Schapira (2004) Pramipexole protects against apoptotic cell death by nondopaminergic mechanisms.J. Neurochem. 91, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC and B Halliwell (1996) Oxidative stress, brain iron and neurodegeneration. Basic principles. In:Neurodegeneration and Neuroprotection in Parkinson’s Disease (Jenner P, Ed.) (Academic Press:London), pp 1–21.

    Chapter  Google Scholar 

  • Hall DA and PG Strange (1997) Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors.Br. J. Pharmacol. 121, 731–736.

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, PK Andrus, JA Oostveen, JS Althaus and PF VonVoigtlander (1996) Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons.Brain Res. 742, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Iida M, I Miyazaki, K Tanaka, H Kabuto, E Iwata-Ichikawa and N Ogawa (1999) Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist.Brain Res. 838, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Itano Y, Y Kitamura and Y Nomura (1994) 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs.Neurochem. Int. 25, 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, RJ D’Amato, SM Strittmatter and SH Snyder (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci. USA 82, 2173–2177.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease.Mov. Disord. 13 Suppl. 1, 24–34.

    PubMed  Google Scholar 

  • Jorgensen OS and C Richter-Landsberg (1983) D2-protein in PC12 pheochromocytoma cells after nerve growth factor stimulation.Neuroscience 9, 665–672.

    Article  PubMed  CAS  Google Scholar 

  • Jost WH (2004) Ropinirole: current status of the studies.J. Neurol. 251 Suppl. 6, VI/13–18.

    CAS  Google Scholar 

  • Joyce JN, S Presgraves, L Renish, S Borwege, T Osredkar, D Hagner, M Replogle, M PazSoldan and MJ Millan (2003) Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504,in vitro against 1-methyl-4-phenylpyridinium (MPP+) andin vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole.Exp. Neurol. 184, 393–407.

    Article  PubMed  CAS  Google Scholar 

  • Kadota T, T Yamaai, Y Saito, Y Akita, S Kawashima, K Moroi, N Inagaki and K Kadota (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells.J. Histochem. Cytochem. 44, 989–996.

    PubMed  CAS  Google Scholar 

  • Kimmel HL, AR Joyce, FI Carroll and MJ Kuhar (2001) Dopamine D1 and D2 receptors influence dopamine transporter synthesis and degradation in the rat.J. Pharmacol. Exp. Ther. 298, 129–140.

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Y Kohno, M Nakazawa and Y Nomura (1997) Inhibitory effects of talipexole and pramipexole on MPTPinduced dopamine reduction in the striatum of C57BL/6N mice.Jpn. J. Pharmacol. 74, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, C Mitsuhata, S Davis, JB Wang, T Sato, K Morita, GR Uhl and T Dohi (1998) MPP+ toxicity and plasma membrane dopamine transporter: study using cell lines expressing the wildtype and mutant rat dopamine transporters.Biochim. Biophys. Acta 1404, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, L Conforti, WH Zhu, D Beitner-Johnson and DE Millhorn (1999) Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC 12 cells.Pflugers Arch. 438, 750–759.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, P Nowak, JP Kostrzewa, RA Kostrzewa and R Brus (2005) Peculiarities of L-DOPA treatment of Parkinson’s disease.Amino Acids 28, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, P Ballard, JW Tetrud and I Irwin (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Le WD and J Jankovic (2001) Are dopamine receptor agonists neuroprotective in Parkinson’s disease?Drugs Aging 18, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Le WD, J Jankovic, W Xie and SH Appel (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection.J. Neural Transm. 107, 1165–1173.

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, TY Ha, DJ Son, SR Kim and JT Hong (2005) Effect of sesaminol glucosides on beta-amyloid-induced PC12 cell death through antioxidant mechanisms.Neurosci. Res. 52, 330–341.

    Article  PubMed  CAS  Google Scholar 

  • Levi MS and MA Brimble (2004) A review of neuroprotective agents.Curr. Med. Chem. 11, 2383–2397.

    PubMed  CAS  Google Scholar 

  • Lin C, P McGonigle and PB Molinoff (1987) Characterization of D-2 dopamine receptors in a tumor of the rat anterior pituitary gland.J. Pharmacol. Exp. Ther. 242, 950–956.

    PubMed  CAS  Google Scholar 

  • Liu LX, LH Burgess, AM Gonzalez, DR Sibley and LA Chiodo (1999) D2 S, D2 L, D3, and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 x mesencephalon hybrid cell (MES-23.5) via distinct G proteins.Synapse 31, 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, H Kato, T Chen, K Kato and Y Itoyama (1995) Bromocriptine protects against delayed neuronal death of hippocampal neurons following cerebral ischemia in the gerbil.J. Neurol. Sci. 129, 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Liu YF, KH Jakobs, MM Rasenick and PR Albert (1994) G protein specificity in receptor-effector coupling. Analysis of the roles of G0 and G12 in GH4C1 pituitary cells.J. Biol. Chem. 269, 13880–13886.

    PubMed  CAS  Google Scholar 

  • Lledo A (2000) Dopamine agonists: the treatment for Parkinson’s disease in the XXI century?Parkinsonism Relat. Disord. 7, 51–58.

    Article  PubMed  Google Scholar 

  • Marin R, B Guerra, R Alonso, CM Ramirez and M Diaz (2005) Estrogen activates classical and alternative mechanisms to orchestrate neuroprotection.Curr. Neurovasc. Res. 2, 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Martin A and M Clynes (1991) Acid phosphatase: endpoint forin vitro toxicity tests.In vitro Cell Dev. Biol. 27A, 183–184.

    Article  PubMed  CAS  Google Scholar 

  • McGavin JK and KL Goa (2002) Aripiprazole.CNS Drugs 16, 779–786; discussion 787-778.

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishnan D and KP Mohanakumar (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice.FASEB J. 12, 905–912.

    PubMed  CAS  Google Scholar 

  • Meiergerd SM, TA Patterson and JO Schenk (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studiesin vitro andin vivo.J. Neurochem. 61, 764–767.

    PubMed  CAS  Google Scholar 

  • Melamed E, G Friedberg and J Zoldan (1999) Psychosis: impact on the patient and family.Neurology 52, S14-S16.

    PubMed  CAS  Google Scholar 

  • Mytilineou C (2001) Mechanism of MPTP neurotoxicity. In:Mechanisms of Degeneration and Protection of the Dopaminergic System (Segura-Aguilar J, Ed.) (FP Graham Publ.:Johnson City, TN), pp 131–148.

    Google Scholar 

  • Navan P, LJ Findley, MB Undy, RK Pearce and PG Bain (2005) A randomly assigned double-blind cross-over study examining the relative anti-parkinsonian tremor effects of pramipexole and pergolide.Eur. J. Neurol. 12, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, JK Seamans and H Trantham-Davidson (2004) Dopamine receptor signaling.J. Recept. Signal Transduct. Res. 24, 165–205.

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, D Cussac, V Audinot, JP Nicolas, F De Ceuninck, JA Boutin and MJ Millan (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D2-like receptor and α1/α2-adrenoceptor.J. Pharmacol. Exp. Ther. 303, 805–814.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MJ, CA Hicks, MA Ward, GP Cardwell, JM Reymann, H Allain and D Bentue-Ferrer (1998) Dopamine D2 receptor agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia.Eur. J. Pharmacol. 352, 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Pan T, W Xie, J Jankovic and W Le (2005) Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection.Neurosci. Lett. 377, 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Parker SG, P Raval, S Yeulet and RJ Eden (1994) Tolerance to peripheral, but not central, effects of ropinirole, a selective dopamine D2-like receptor agonist.Eur. J. Pharmacol. 265, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Pothos EN, S Przedborski, V Davila, Y Schmitz and D Sulzer (1998) D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells.J. Neurosci. 18, 5575–5585.

    PubMed  CAS  Google Scholar 

  • Presgraves SP, S Borwege, MJ Millan and JN Joyce (2004) Involvement of dopamine D2/D3 receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SHSY5Y cells.Exp. Neurol. 190, 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S and M Vila (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease.Ann. NYAcad. Sci. 991, 189–198.

    Article  CAS  Google Scholar 

  • Riederer P, J Sian and M Gerlach (2000) Is there neuroprotection in Parkinson syndrome?J. Neurol. 247 Suppl. 4, IV/8–11.

    Google Scholar 

  • Roehm NW, GH Rodgers, SM Hatfield and AL Glasebrook (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT.J. Immunol. Methods 142, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau J, L Cossette, S Grenier and MG Martinoli (2002) Modulation of prolactin expression by xenoestrogens.Gen. Comp. Endocrinol. 126, 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, M Ibi, T Kihara, M Urushitani, A Akaike, J Kimura and S Shimohama (1998) Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress.Ann. Neurol. 44, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2002) Neuroprotection and dopamine agonists.Neurology 58, S9-S18.

    PubMed  CAS  Google Scholar 

  • Schapira AH (2003) Neuroprotection in PD - a role for dopamine agonists?Neurology 61, S34-S42.

    PubMed  CAS  Google Scholar 

  • Schapira AH and CW Olanow (2004) Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions.JAMA 291, 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD and BA Zakrajsek (2000) Effect of experimental treatment on housekeeping gene expression: validation by real time, quantitative RT-PCR.J. Biochem. Biophys. Methods 46, 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Segura Aguilar J and RM Kostrzewa (2004) Neurotoxins and neurotoxic species implicated in neurodegeneration.Neurotoxicity Res. 6, 615–630.

    Article  Google Scholar 

  • Sharma JC, L Macnamara, M Hasoon and M Vassallo (2004) Diagnostic and therapeutic value of apomorphine in Parkinsonian patients.Int. J. Clin. Pract. 58, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Stonehouse AH and FS Jones (2005) Bromocriptine and clozapine regulate dopamine D2 receptor gene expression in the mouse striatum.J. Mol. Neurosci. 25, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres J, AS Pacsa and B Pejtsik (1981) Measurement of lymphocyte cytotoxicity by assessing endogenous alkaline phosphatase activity of the target cells.J. Immunol. Meth. 40, 151–154.

    Article  CAS  Google Scholar 

  • Tischler AS, RL Perlman, GM Morse and BE Sheard (1983) Glucocorticoids increase catecholamine synthesis and storage in PC 12 pheochromocytoma cell cultures.J. Neurochem. 40, 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Toran-Allerand CD (2004) Estrogen and the brain: beyond ERalpha and ER-beta.Exp. Gerontol. 39, 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, DC Buck, R Yang, TA Macey and KA Neve (2005) Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases.J. Neurochem. 93, 899–909.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M (1998) Do dopamine agonists provide neuroprotection?Neurology 51, S10-S12.

    PubMed  CAS  Google Scholar 

  • Youdim MB, E Grunblatt and S Mandel (1999) The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects forneuroprotection in Parkinson’s disease with iron chelators.Ann. NYAcad. Sci. 890, 7–25.

    Article  CAS  Google Scholar 

  • Zou L, J Jankovic, DB Rowe, W Xie, SH Appel and W Le (1999) Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity.Life Sci. 64, 1275–1285.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Grazia Martinoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiasson, K., Daoust, B., Levesque, D. et al. Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+-induced toxicity in PC12 cells. neurotox res 10, 31–42 (2006). https://doi.org/10.1007/BF03033332

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033332

Keywords

Navigation