Skip to main content
Log in

Molecular genetic abnormalities in the pathogenesis of human lung cancer

  • Review
  • Published:
Pathology Oncology Research

Abstract

In the past few years our knowledge of the molecular pathogenesis of lung cancer has significantly increased. There are several molecular mechanisms involved in the multistage carcinogenesis through which respiratory epithelial cells become preneoplastic and then invasive cancer. In this review we summarize some of these changes including, genomic alterations such as loss of heterozygosity and microsatellite alterations, autocrine-paracrine loops, alterations in oncogenes and tumor suppressor genes, tumor angiogenesis, aberrant promoter methylation and inherited predisposition to lung cancer. Translation of these findings to the clinic is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hecht SS: Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Wistuba, II, Lam S, Behrens C: Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst 89:1366–1373, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Mao L, Lee JS, Kurie JM: Clonal genetic alterations in the lungs of current and former smokers [see comments]. J Natl Cancer Inst 89:857–862, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Denissenko MF, Pao A, Tang M: Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Wistuba, II, Behrens C, Virmani AK: High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 60:1949–1960, 2000.

    PubMed  CAS  Google Scholar 

  6. Girard L, Zochbauer-Muller S, Virmani AK: Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60:4894–4906, 2000.

    PubMed  CAS  Google Scholar 

  7. Sekido Y, Fong KM, Minna JD: Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1378:21–59, 1998.

    Google Scholar 

  8. Ryberg D, Lindstedt BA, Zienolddiny S: A hereditary genetic marker closely associated with microsatellite instability in lung cancer. Cancer Res 55:3996–3999, 1995.

    PubMed  CAS  Google Scholar 

  9. Rosell R, Pifarre A, Monzo M: Reduced survival in patients with stage-I non-small-cell lung cancer associated with DNA-replication errors. Int J Cancer 74:330–334, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Albanell J, Lonardo F, Rusch V: High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J Natl Cancer Inst 89:1609–1615, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Hiyama K, Hiyama E, Ishioka S: Telomerase activity in small-cell and non-small-cell lung cancers [see comments]. J Natl Cancer Inst 87:895–902, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Fathi Z, Way JW Corjay MH: Bombesin receptor structure and expression in human lung carcinoma cell lines. J Cell Biochem Suppl 24:237–246, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Richardson GE, Johnson BE: The biology of lung cancer. Semin Oncol 20:105–127, 1993.

    PubMed  CAS  Google Scholar 

  14. Cuttitta F, Carney DN, Mulshine J: Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Halmos G, Schally AV: Reduction in receptors for bombesin and epidermal growth factor in xenografts of human small-cell lung cancer after treatment with bombesin antagonist RC-3095. Proc Natl Acad Sci USA 94:956–960, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Shriver SP, Bourdeau HA, Gubish CT: Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. J Natl Cancer Inst 92:24–33, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Rachwal WJ, Bongiorno PF, Orringer MB: Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas. Br J Cancer 72:56–64, 1995.

    PubMed  CAS  Google Scholar 

  18. Weiner DB, Nordberg J, Robinson R: Expression of the neu gene-encoded protein (P185neu) in human non-small cell carcinomas of the lung. Cancer Res 50:421–425, 1990.

    PubMed  CAS  Google Scholar 

  19. Kern JA, Torney L, Weiner D: Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am J Respir Cell Mol Biol 9:448–454, 1993.

    PubMed  CAS  Google Scholar 

  20. Tateishi M, Ishida T, Mitsudomi T: Immunohistochemical evidence of autocrine growth factors in adenocarcinoma of the human lung. Cancer Res 50:7077–7780, 1990.

    PubMed  CAS  Google Scholar 

  21. Damstrup L, Rygaard K, Spang-Thomsen M: Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res 52:3089–3093, 1992.

    PubMed  CAS  Google Scholar 

  22. Lei W Mayotte JE, Levitt ML: Enhancement of chemosensitivity and programmed cell death by tyrosine kinase inhibitors correlates with EGFR expression in non-small cell lung cancer cells. Anticancer Res 19:221–228, 1999.

    PubMed  CAS  Google Scholar 

  23. Ciardiello F, Caputo R, Bianco R: Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptorselective tyrosine kinase inhibitor. Clin Cancer Res 6:2053–2063, 2000.

    PubMed  CAS  Google Scholar 

  24. Lynch TJ, Jr.: Lung cancer highlights [In Process Citation]. Oncologist 5:274–9, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Harvey P, Warn A, Newman P: Immunoreactivity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J Pathol 180:389–394, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Olivero M, Rizzo M, Madeddu R: Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74:1862 1868, 1996.

    PubMed  Google Scholar 

  27. Siegfried JM, Weissfeld LA, Singh-Kaw P: Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res 57:433–439, 1997.

    PubMed  CAS  Google Scholar 

  28. Quinn KA, Treston AM, Unsworth EJ: Insulin-like growth factor expression in human cancer cell lines. J Biol Chem 271:11477–11483, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Antoniades HN, Galanopoulos T, Neville-Golden J: Malignant epithelial cells in primary human lung carcinomas coexpress in vivo platelet-derived growth factor (PDGF) and PDGF receptor mRNAs and their protein products. Proc Natl Acad Sci USA 89:3942–3946, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Slebos RJ, Kibbelaar RE, Dalesio O: K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323:561–565, 1990.

    PubMed  CAS  Google Scholar 

  31. Mitsudomi T, Oyama T, Kusano T: Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer [see comments]. J Natl Cancer Inst 85:2018–2023, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Rosell R, Li S, Skacel Z: Prognostic impact of mutated K-ras gene in surgically resected non-small cell lung cancer patients. Oncogene 8:2407–2412, 1993.

    PubMed  CAS  Google Scholar 

  33. Graziano SL, Gamble GP, Newman NB: Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol 17:668–675, 1999.

    PubMed  CAS  Google Scholar 

  34. Johnson BE, Russell E, Simmons AM: MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem Suppl 24:210–217, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Kaiser U, Schilli M, Haag U: Expression of bcl-2—protein in small cell lung cancer. Lung Cancer 15:31–40, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Pezzella F, Turley H, Kuzu I: bcl-2 protein in non-small-cell lung carcinoma [see comments]. N Engl J Med 329:690–694, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Kok K, Osinga J, Carritt B: Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature 330:578–581, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Naylor SL, Johnson BE, Minna JD: Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329:451–454, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Whang-Peng J, Kao-Shan CS, Lee EC: Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14–23). Science 215:181–182, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Wistuba, II, Behrens C, Virmani AK: Allelic losses at chromosome 8p21–23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res 59:1973–1979, 1999.

    PubMed  CAS  Google Scholar 

  41. Hibi K Takahashi T, Yamakawa K: Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 7:445–449, 1992.

    PubMed  CAS  Google Scholar 

  42. Todd S, Franklin WA, Varella-Garcia M: Homozygous deletions of human chromosome 3p in lung tumors. Cancer Res 57:1344–1352, 1997.

    PubMed  CAS  Google Scholar 

  43. Wei MH, Latif F, Bader S: Construction of a 600-kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene (TSG) locus on human chromosome 3p21.3: progress toward the isolation of a lung cancer TSG. Cancer Res 56:1487–1492, 1996.

    PubMed  CAS  Google Scholar 

  44. Fong KM, Biesterveld EJ, Virmani A: FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res 57:2256–2267, 1997.

    PubMed  CAS  Google Scholar 

  45. Lerman IM, Minna DJ: The 630-kb Lung Cancer Homozygous Deletiion Region on Human Chromosome 3p21.3: Identification and Evaluation of the Resident Candidate Tumor Suppressor Genes. Cancer Res 60:6116–6133, 2000.

    PubMed  CAS  Google Scholar 

  46. Gao B, Sekido Y, Maximov A: Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem 275:12237–122342, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Sekido Y, Bader S, Latif F: Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA 93:4120–4125, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Shirvan A, Ziv I, Fleminger G: Semaphorins as mediators of neuronal apoptosis. J Neurochem 73:961–971, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Burbee G. D, Forgacs E, Zöchbauer-Müller S: Epigenetic Inactivation of RASSFIA in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst, In press: 2001.

  50. Dammann R, Li C, Yoon JH: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3 [In Process Citation]. Nat Genet 25:315–9, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Jensen DE, Proctor M, Marquis ST: BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16:1097–112, 1998.

    Article  PubMed  CAS  Google Scholar 

  52. Papadopoulos N, Nicolaides NC, Wei YF: Mutation of a mutL homolog in hereditary colon cancer [see comments]. Science 263:1625–1629, 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Sundaresan V, Roberts I, Bateman A: The DUTT1 Gene, a Novel NCAM Family Member Is Expressed in Developing Murine Neural Tissues and Has an Unusually Broad Pattern of Expression. Mol Cell Neurosci 11:29–35, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Sozzi G, Veronese ML, Negrini M: The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 85:17–26, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Geradts J, Fong KM, Zimmerman PV. Loss of Fhit expression in non-small-cell lung cancer: correlation with molecular genetic abnormalities and clinicopathological features. Br J Cancer 82:1191–1197, 2000.

    Article  PubMed  CAS  Google Scholar 

  56. Siprashvili Z, Sozzi G, Barnes LD: Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci USA 94:13771–13776, 1997.

    Article  PubMed  CAS  Google Scholar 

  57. Ji L, Fang B, Yen N: Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res 59:3333–3339, 1999.

    PubMed  CAS  Google Scholar 

  58. Sekido Y, Bader S, Latif F: Molecular analysis of the von Hippel-Lindau disease tumor suppressor gene in human lung cancer cell lines. Oncogene 9:1599–1604, 1994.

    PubMed  CAS  Google Scholar 

  59. Chevillard S, Radicella JP, Levalois C: Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene 16:3083–3086, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Zöchbauer-Müller S, Fong M, Virmani K: Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61:249–255, 2001.

    PubMed  Google Scholar 

  61. Virmani A, Rathi A, Zöchbauer-Müller S: Promoter Methylation and Silencing of the Retinoic Acid Receptor-B Gene in Lung Carcinomas. Journal of National Cancer Institute Vol 92.:1303–1307, 2000.

    Article  CAS  Google Scholar 

  62. Yunis JJ, Ramsay N: Retinoblastoma and subband deletion of chromosome 13. Am J Dis Child 132:161–163, 1978.

    PubMed  CAS  Google Scholar 

  63. Ewen ME: The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 13:45–66, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Reissmann PT, Koga H, Takahashi R: Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. The Lung Cancer Study Group. Oncogene 8:1913–1919, 1993.

    PubMed  CAS  Google Scholar 

  65. Cagle PT, el-Naggar AK, Xu HJ: Differential retinoblastoma protein expression in neuroendocrine tumors of the lung. Potential diagnostic implications. Am J Pathol 150:393–400, 1997.

    PubMed  CAS  Google Scholar 

  66. Dosaka-Akita H, Hu SX, Fujino M: Altered retinoblastoma protein expression in nonsmall cell lung cancer: its synergistic effects with altered ras and p53 protein status on prognosis. Cancer 79:1329–1337, 1997.

    Article  PubMed  CAS  Google Scholar 

  67. Xu HJ, Quinlan DC, Davidson AG: Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma. J Natl Cancer Inst 86:695–699, 1994.

    Article  PubMed  CAS  Google Scholar 

  68. Kratzke RA, Greatens TM, Rubins JB: Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res 56:3415–3420, 1996.

    PubMed  CAS  Google Scholar 

  69. Shimizu E, Coxon A, Otterson GA: RB protein status and clinical correlation from 171 cell lines representing lung cancer, extrapulmonary small cell carcinoma, and mesothelioma. Oncogene 9:2441–2448, 1994.

    PubMed  CAS  Google Scholar 

  70. Sanders BM, Jay M, Draper GJ: Non-ocular cancer in relatives of retinoblastoma patients. Br J Cancer 60:358–365, 1989.

    PubMed  CAS  Google Scholar 

  71. Serrano M, Lee H, Chin L: Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37, 1996.

    Article  PubMed  CAS  Google Scholar 

  72. Merlo A, Herman JG, Mao L: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers [see comments]. Nat Med 1:686–692, 1995.

    Article  PubMed  CAS  Google Scholar 

  73. Rusin MR, Okamoto A, Chorazy M: Intragenic mutations of the p16(INK4), p15(INK4B) and p18 genes in primary non-small-cell lung cancers. Int J Cancer 65:734–739, 1996.

    Article  PubMed  CAS  Google Scholar 

  74. Marchetti A, Buttitta F, Pellegrini S: Alterations of P16 (MTS1) in node-positive non-small cell lung carcinomas. J Pathol 181:178–182, 1997.

    Article  PubMed  CAS  Google Scholar 

  75. Shapiro GI, Park JE, Edwards CD: Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Res 55:6200–6209, 1995.

    PubMed  CAS  Google Scholar 

  76. Okamoto A, Demetrick DJ, Spillare EA: Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 91:11045–11049, 1994.

    Article  PubMed  CAS  Google Scholar 

  77. Geradts J, Fong KM, Zimmerman PV: Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res 5:791–800, 1999.

    PubMed  CAS  Google Scholar 

  78. Taga S, Osaki T, Ohgami A: Prognostic value of the immuno-histochemical detection of p16INK4 expression in nonsmall cell lung carcinoma. Cancer 80:389–395, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Gazzeri S, Delia Valle V, Chaussade L: The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58:3926–331, 1998.

    PubMed  CAS  Google Scholar 

  80. Sidransky D, Hollstein M: Clinical implications of the p53 gene. Annu Rev Med 47:285–301, 1996.

    Article  PubMed  CAS  Google Scholar 

  81. Greenblatt MS, Bennett WP, Hollstein M: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878, 1994.

    PubMed  CAS  Google Scholar 

  82. Takahashi T, Nau MM, Chiba I: p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491–494, 1989.

    Article  PubMed  CAS  Google Scholar 

  83. Bennett WP, Hussain SP, Vahakangas KH: Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol 187:8–18, 1999.

    Article  PubMed  CAS  Google Scholar 

  84. Bennett WP, Colby TV, Travis WD: p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res 53:4817–22, 1993.

    PubMed  CAS  Google Scholar 

  85. Graziano SL: Non-small cell lung cancer: clinical value of new biological predictors. Lung Cancer 17 Suppl 1:S37–58, 1997.

    Article  PubMed  Google Scholar 

  86. Roth JA, Nguyen D, Lawrence DD: Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 2:985–91, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. Roth JA, Swisher SG, Merritt JA: Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin Oncol 25:33–37, 1998.

    PubMed  CAS  Google Scholar 

  88. Forgacs E, Biesterveld EJ, Sekido Y: Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene 17:1557–1565, 1998.

    Article  PubMed  CAS  Google Scholar 

  89. Wu W Kemp BL, Proctor ML: Expression of DMBT1, a candidate tumor suppressor gene, is frequently lost in lung cancer. Cancer Res 59:1846–1851, 1999.

    PubMed  CAS  Google Scholar 

  90. Esteller M, Sanchez-Cespedes M, Rosell R: Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59:67–70, 1999.

    PubMed  CAS  Google Scholar 

  91. Fontanini G, Vignati S, Boldrini L: Vascular Endothelial Growth Factor Is Associated with Neovascularization and Influences Progression of Non-Small Cell Lung Carcinoma. Clin Cancer Res 3:861–865, 1997.

    PubMed  CAS  Google Scholar 

  92. Takanami I, Imamura T Hashizume T: Immunohistochemical detection of basic fibroblast growth factor as a prognostic indicator in pulmonary adenocarcinoma. Jpn J Clin Oncol 26:293–297, 1996.

    PubMed  CAS  Google Scholar 

  93. Koukourakis ML, Giatromanolaki A, O’Byrne KJ: Platelet-derived endothelial cell growth factor expression correlates with tumour angiogenesis and prognosis in non-small-cell lung cancer. Br J Cancer 75:477–481, 1997.

    PubMed  CAS  Google Scholar 

  94. Spivack SD, Fasco MJ, Walker VE: The molecular epidemiology of lung cancer. Crit Rev Toxicol 27:319–365, 1997.

    Article  PubMed  CAS  Google Scholar 

  95. Spitz MR, Wei Q, Li G: Genetic susceptibility to tobacco carcinogenesis [see comments]. Cancer Invest 17:645–659, 1999.

    Article  PubMed  CAS  Google Scholar 

  96. Wu X, Zhao Y, Honn SE: Benzo[a]pyrene diol epoxide-induced 3p21.3 aberrations and genetic predisposition to lung cancer. Cancer Res 58: 605–1608, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Minna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgacs, E., Zöchbauer-Müller, S., Oláh, E. et al. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol. Oncol. Res. 7, 6–13 (2001). https://doi.org/10.1007/BF03032598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03032598

Keywords

Navigation