Skip to main content
Log in

Alterations in human endothelial cell morphology, proliferation and function by a macrophage-derived factor

  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Changes in endothelial cell (EC) morphology occur at sites of physiological lymphocyte traffic and in areas of chronic inflammation. Previous studies have shown that EC shape changes also occurin vitro following exposure of EC monolayers to peripheral blood mononuclear cell (PBMC)-derived conditioned media (CM). In the present study, quantitative image analysis is used to define the cell of origin of the elongating factor(s), to examine changes in EC proliferation and function accompanying PBMC-induced human EC elongation and to identify the active PBMC-derived products responsible for this elongation. By separating mononuclear cells into subpopulations (macrophages, B cells and T cells) and adding conditioned media derived from these subpopulations to cultured ECs, the macrophage (Mφ) is shown to be the primary cell of origin of the elongating factor(s). Furthermore, EC elongation is accompanied by both a dose-dependent decrease in cellular proliferation and an increase in prostacyclin production. These findings suggest that PBMC-induced changes in EC morphology may be associated with a shift from a proliferative state to a more secretory phase of the EC cycle. Finally, using recombinant factors it is shown that TNFoc acting in combination with IL-I may be the active PBMC-derived products which contribute to EC elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marchesi, V.T., Gowans, J.L. The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc. Roy. So.c B. 1964; 159, 283–290.

    Article  CAS  Google Scholar 

  2. Hendriks, H. R., Eestermans, I. L. Disappearance and reappearance of high endothelial venules and immigrating lymphocytes in lymph nodes deprived of afferent lymphatic vessels. A possible regulatory role of macrophages in lymphocyte migration. Eur. J. Immunol. 1983; 13,663–669.

    Article  PubMed  CAS  Google Scholar 

  3. Fossum, S., Smith, M. E., Ford, W. L. The migration of lymphocytes across specialized vascular endothelium VII. The migration of T and B lymphocytes from the blood of the athymic, nude rat. Scand. J. Immunol. 1983; 17, 539–550.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, R. A. F., Dvorak, H. F., Colvin, R. B. Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J. Immunol. 1981; 126, 787–793.

    PubMed  CAS  Google Scholar 

  5. Dvorak, A. M, Mihm, M. C., Dvorak, H. F. Morphology of delayed type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cells. Lab. Invest. 1976; 34, 179–191.

    PubMed  CAS  Google Scholar 

  6. Freemont, A. J., Ford, W. L. Functional and morphological changes in postcapillary venules in relation to lymphocytic infiltration into BCG-induced granulomata in rat skin. J. Pathol. 1985; 147, 1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Polverini, P. J., Cotran, R. S., Sholly, M. M. Endothelial proliferation in delayed hypersensitivity reaction: an autoradiographic study. J. Immunol. 1977; 118, 529–532.

    PubMed  CAS  Google Scholar 

  8. Willms-Kretschmer, K., Flax, M. H., Cotran, R. S. The fine structure of the vascular response in hapten-specific delayed hypersensitivity and contact dermititis. Lab. Invest. 1967; 17, 334–349.

    PubMed  CAS  Google Scholar 

  9. Dumonde, D. C., Pulley, M. S., Paradinas, F. I., et al. Histological features of skin reactions to human lymphoid cell line lymphokine in patients with advanced cancer. J. Pathol. 1982; 138, 289–308.

    Article  PubMed  CAS  Google Scholar 

  10. Iguchi, T., Ziff, M. Electron microscope study of rheumatoid vasculature: intimate relationship between tall endothelium and lymphoid aggregation. J. Clin. Invest. 1986; 77, 355–361.

    Article  PubMed  CAS  Google Scholar 

  11. FitzGerald, O., Soden, M., Yanni, G., Robinson, R., et al. Morphometric analysis of blood vessels in synovial membrane obtained from the clinically involved and uninvolved knee joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 1991; 50, 792–796.

    Article  PubMed  CAS  Google Scholar 

  12. Groenewegen, G., Buurman, W. A., Van derLinden, C. G. Lymphokines induce changes in morphology and enhance motility of endothelial cells. Clin. Immunol. Immunopathol. 1985; 36, 378–385.

    Article  PubMed  CAS  Google Scholar 

  13. Montesano, R., Mossax, A., Ryser, J. E., et al. Leukocyte interleukins induce cultured endothelial cells to produce a highly organized, glycosaminoglycan-rich pericellular matrix. J. Cell Biol. 1984; 99, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  14. Montesano, R., Orci, L., Vassalli, P. Human endothelial cell cultures: phenotypic modulation by leucocyte interleukins. J. Cell Physiol. 1985; 122, 424–434.

    Article  PubMed  CAS  Google Scholar 

  15. Pober, J. S., Gimbrone, M. A. Expression of la-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation. Proc. Natl. Acad. Sci. 1982; 79,6641–6645.

    Article  PubMed  CAS  Google Scholar 

  16. Camussi, G., Turello, E., Busselino, F.,et al. Tumor necrosis factor alters cytoskeletal organization and barrier function of endothelial cells. Int. Arch Allergy Appl. Immunol. 1991; 96, 84–91.

    PubMed  CAS  Google Scholar 

  17. Ruszczak, Z., Detmar, M., Imcke, E., et al. Effects of rIFN alpha, beta, and gamma on the morphology, proliferation, and cell surface antigen expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 1990; 95, 693–699.

    Article  PubMed  CAS  Google Scholar 

  18. FitzGerald, O. M., Hess, E. V., Chance, A., et al. Quantitative studies of human monokine-induced endothelial cell elongation. J. Leuk. Biol. 1987; 41, 421–428.

    CAS  Google Scholar 

  19. Maclouf, J. A radioimmunassay for 6-keto-PGFla. In: Methods in Enzymology. Academic Press, Inc, New York 1982; 86, 273–286.

    Google Scholar 

  20. Stolpen, A. H., Guinan, E. C., Fiers, W., et al. Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am. J. Pathol. 1986; 123, 16–24.

    PubMed  CAS  Google Scholar 

  21. Dejana, E., Breviario, F., Balconi, G., et al. Stimulation of prostacyclin synthesis in vascular cells by mononuclear cell products. Blood 1984; 64, 1280–1283.

    PubMed  CAS  Google Scholar 

  22. Eldor, A., Fridman, R., Vlodavsky, I., et al. Interferon enhances prostacyclin production by cultured vascular endothelial cells. J. Clin. Invest. 1984; 73, 251–257.

    Article  PubMed  CAS  Google Scholar 

  23. Rossi, V., Breviario, F., Ghezzi, P., et al. Prostacyclin synthesis induced in vascular cells by interleukin-1. Science 1985; 229, 174–176.

    Article  PubMed  CAS  Google Scholar 

  24. Wickham, J. M., Butcher, G. A. Initial characterization of a lymphocyte-derived factor that is a potent stimulator of human endothelial cell prostacyclin (PGI2) production. J. Lab. Clin. Immunol. 1985; 17, 203–206.

    CAS  Google Scholar 

  25. Ooi, B. S., McCarthy, E. P., Hsu, A., et al. Human mononuclear cell modulation of endothelial cell proliferation. J. Lab. Clin. Med. 1983; 102, 428433.

    Google Scholar 

  26. Watt, S. L., Auerbach, R. A mitogenic factor for endothelial cells obtained from mouse secondary leucocyte cultures. J. Immunol. 1986; 136, 197–202.

    PubMed  CAS  Google Scholar 

  27. Nawroth.P. P., Bank, I., Handley, D., et al. Tumor necrosis factor/cachectin interacts with endothelial receptors to induce release of interleukin-l. J. Exp. Med. 1986; 163, 1363–1375.

    Article  PubMed  Google Scholar 

  28. Dinarello, C. A., Cannon, J. G., Wolff, S. M., et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J. Exp. Med. 1986; 163, 1433–1450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heffernan, M., Chance, A., Hess, E.V. et al. Alterations in human endothelial cell morphology, proliferation and function by a macrophage-derived factor. I.J.M.S. 163, 359–365 (1994). https://doi.org/10.1007/BF02942828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942828

Keywords

Navigation