Skip to main content
Log in

Genetic analysis of transcription factors implicated in B lymphocyte development

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The transcription factors Oct-2, NF-ϰB and PU. 1 have been implicated in regulating the development of B lymphocytes. Genetic approaches have been used to analyze the developmental functions of these regulatory proteins. Using gene targeting in murine embryonic stem cells, PU. 1 is shown to be required for the development of progenitor B cells. Strikingly, PU. 1 is also essential for the development of T lymphoid, granulocytic and monocytic progenitors. Transcription factors of the NF-ϰB/Rel family, which appear to regulate immunoglobulin kappa gene expression, are shown to be a target of the viral transforming protein (v-abl) which arrests B lineage development at the precursor B stage. This suggests a mechanism by which v-abl blocks precursor B cell differentiation. The Oct-2 transcription factor was considered to represent a development regulator of immunoglobulin gene expression. Using gene targeting in a murine B cell, Oct-2 is shown to be dispensable for immunoglobulin gene expression. This suggests the existence of an alternate pathway, involving the ubiquitous related protein, Oct-1, in immunoglobulin gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rolink A, Melchers F: Molecular and cellular origins of B lymphocyte diversity. Cell 1991;66:1081–1094.

    Article  PubMed  CAS  Google Scholar 

  2. Blackwell TK, Alt FW: Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet 1989;23:605–636.

    Article  PubMed  CAS  Google Scholar 

  3. Ehlich A, Schaal S, Gu H, Kitamura D, Müller W, Rajewsky K: Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 1993;72:695–704.

    Article  PubMed  CAS  Google Scholar 

  4. Scott EW, Simon MC, Anastasi J, Singh H: Requirement of transcription factor PU. 1 in the development of multiple hematopoietic lineages. Science 1994;265:1573–1577.

    Article  PubMed  CAS  Google Scholar 

  5. Liou H, Baltimore D: Regulation of the NF-ϰB/rel transcription factor and IϰB inhibitor system. Curr Opin Cell Biol 1993;5:4777–487.

    Article  Google Scholar 

  6. Klug CA, Gerety SJ, Shah P, Chen Y, Rice NR, Rosenberg N, Singh H: Thev-abl tyrosine kinase negatively regulates NF-ϰB/Rel factors and blocks ϰ gene transcription in pre-B lymphocytes. Genes Dev 1994;8:678–687.

    Article  PubMed  CAS  Google Scholar 

  7. Feldhaus AL, Klug CA, Arvin KL, Singh H: Targeted disruption of the Oct-2 locus in a B cell provides genetic evidence for two distinct cell type-specific pathways of octamer element-mediated gene activation. EMBO J 1993;12:2763–2772.

    PubMed  CAS  Google Scholar 

  8. Corcoran LM, Karvelas M, Nossal GJV, Ye Z-S, Jacks T, Baltimore D: Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev 1993;7:570–582.

    Article  PubMed  CAS  Google Scholar 

  9. Foster J, Stafford J, Queen C: An immunoglobulin promoter displays cell-type specificity independently of the enhancer. Nature 1985;315: 423–425.

    Article  PubMed  CAS  Google Scholar 

  10. Gopal TV, Shimada T, Bauer AW, Nienhuis AW: Contribution of promoter to tissue-specific expression of the mouse immunoglobulin kappa gene. Science 1985;229:1102–1105.

    Article  PubMed  CAS  Google Scholar 

  11. Mason JO, Williams GT, Neuberger MS: Transcription cell type specificity conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence. Cell 1985;41:479–487.

    Article  PubMed  CAS  Google Scholar 

  12. Picard D, Schaffner W: Cell-type preference of immunoglobulin ϰ and λ gene promoters. EMBO J 1985;4:2831–2838.

    PubMed  CAS  Google Scholar 

  13. Staudt LM, Lenardo MJ: Immunoglobulin gene transcription. Annu Rev Immunol 1991;9:373–398.

    Article  PubMed  CAS  Google Scholar 

  14. Parslow TG, Blair DL, Murphy WJ, Granner DK: Structure of the 5′ ends of immunoglobulin genes: A novel conserved sequence. Proc Natl Acad Sci USA 1984;81:2650–2654.

    Article  PubMed  CAS  Google Scholar 

  15. Bergman Y, Rice D, Grosschedl R, Baltimore D: Two regulatory elements for immunoglobulin κ light chain gene expression. Proc Natl Acad Sci USA 1984;81:7041–7045.

    Article  PubMed  CAS  Google Scholar 

  16. Falkner FG, Zachau HZ: Correct transcription of an immunoglobulin κ gene requires an upstream fragment containing conserved sequence elements. Nature 1984;310:71–74.

    Article  PubMed  CAS  Google Scholar 

  17. Jenuwain T, Grossehedl R: Complex pattern of immunoglobulin mu gene expression in normal and transgenic mice: Nonoverlapping regulatory sequences govern distinct tissue specificities. Genes Dev 1991;5:932–943.

    Article  Google Scholar 

  18. Dreyfus M, Doyen N, Rougeon F: The conserved decanucleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into a heterologous promoter. EMBO 1987;6:1685–1690.

    CAS  Google Scholar 

  19. Wirth T, Staudt L, Baltimore D: An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature 1987;329:174–178.

    Article  PubMed  CAS  Google Scholar 

  20. LaBella F, Sive HL, Roeder RG, Heintz N: Cell-cycle regulation of a human histone H2b gene is mediated by the H2b subtype-specific consensus elements. Genes Dev 1988;2:32–39.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy S, Moorefield B, Pieler T: Common mechanisms of promoter recognition by RNA polymerases II and III. Trends Genet 1989;5:122–126.

    Article  PubMed  CAS  Google Scholar 

  22. Singh H, Sen R, Baltimore D, Sharp PA: A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 1986;319:154–158.

    Article  PubMed  CAS  Google Scholar 

  23. Staudt LM, Singh H, Sen R, Wirth T, Sharp PA, Baltimore D: A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 1986;323:640–643.

    Article  PubMed  CAS  Google Scholar 

  24. Müller MM, Ruppert S, Schaffner W, Matthias P: A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 1988;336:544–551.

    Article  PubMed  Google Scholar 

  25. Staudt LM, Clerc RG, Singh H, Le-Bowitz JH, Sharp PA, Baltimore D: Cloning of a lymphoid specific cDNA encoding a protein binding the regulatory octamer motif. Science 1988;241:577–580.

    Article  PubMed  CAS  Google Scholar 

  26. Scheidereit C, Cromlish JA, Gerster T, Kawakami K, Balmaceda C, Currie RA, Roder RG: A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein. Nature 1988;336:551–557.

    Article  PubMed  CAS  Google Scholar 

  27. Sturm RA, Das G, Herr W: The ubiquitous octamer protein Oct-1 contains a POU domain with a homeo subdomain. Genes Dev 1988;2:1582–1599.

    Article  PubMed  CAS  Google Scholar 

  28. Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Einney M, Ruvkun G, Horvitz RH: The POU domain. A large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegansunc-86 gene products. Genes Dev 1988;2:1513–1516.

    Article  PubMed  CAS  Google Scholar 

  29. Verrijzer CP, Alkema MJ, van Weperen WW, Van Leeuwen HC, Strating MJJ, van der Vliet PC: The DNA binding specificity of the biopartite POU domain and its subdomains. EMBO J 1992;11:4993–5003.

    PubMed  CAS  Google Scholar 

  30. He X, Treacy N, Simmons DM, Ingraham HA, Swanson LW, Rosenfeld MG: Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 1989;340:35–42.

    Article  PubMed  CAS  Google Scholar 

  31. Schaffner W: How do different transcription factors binding the same DNA sequence sort out their jobs? Trends Genet 1989;5:37–39.

    Article  PubMed  CAS  Google Scholar 

  32. LeBowitz JH, Kobayashi T, Staudt L, Baltimore D, Sharp PA: Octamerbinding proteins from B of HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro. Genes Dev 1988;2:1227–1237.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson DG, Carayannopoulos L, Capra JD, Tucker PW, Hanke JH: The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes. Mol Cell Biol 1990;10:982–990.

    PubMed  CAS  Google Scholar 

  34. Pierani A, Heguy A, Fujii H, Roeder RG: Activation of octamer-containing promoters by either octamerbinding transcription factor 1 (OTF-1) or OTF-2 and requirement of an additional B-cell-specific component for optimal transcription of immunoglobulin promoters. Mol Cell Biol 1990;10:6204–6215.

    PubMed  CAS  Google Scholar 

  35. Luo Y, Fujii H, Gerster T, Roeder RG: A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 1992;71:231–241.

    Article  PubMed  CAS  Google Scholar 

  36. Miller CL, Feldhaus A, Rooney JW, Rhodes LD, Sibley CH, Singh H: Regulation and a possbile stage-specific function of Oct-2 during Pre-B-cell differentiation. Mol Cell Biol 1991;11:4885–4894.

    PubMed  CAS  Google Scholar 

  37. Atchison ML, Perry RP: The role of the κ enhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell 1987;48:121–128.

    Article  PubMed  CAS  Google Scholar 

  38. Lenardo M, Pierce JW, Baltimore D: Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 1987;236:1573–1577.

    Article  PubMed  CAS  Google Scholar 

  39. Takeda S, Zou Y-R, Bluethmann H, Kitamury D, Muller U, Rajewsky K: Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement incis but not λ chain gene rearrangementin trans. EMBO J 1993;12:2329–2336.

    PubMed  CAS  Google Scholar 

  40. Lenardo M, Baltimore D: NF-κB: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989;58:227–229.

    Article  PubMed  CAS  Google Scholar 

  41. Blank V, Kourilsky P, Israël A: NF-κB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. TIBS 1992;17:135–140.

    PubMed  CAS  Google Scholar 

  42. Baeuerle PA, Baltimore D: IκB: A specific inhibitor of the NF-κB transcription factor. Science 1988;242:540–545.

    Article  PubMed  CAS  Google Scholar 

  43. Beg AA, Baldwin AS: The IκB proteins: Multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev 1993;7:2064–2070.

    Article  PubMed  CAS  Google Scholar 

  44. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA: Rapid proteolysis of IκB-a is necessary for activation of transcription factor NF-κB. Nature 1993;365:182–185.

    Article  PubMed  CAS  Google Scholar 

  45. Rice NR, Ernst MK: In vivo control of NF-κB activation by IκBα. EMBO 1993;12:4685–4695.

    CAS  Google Scholar 

  46. Baltimore D, Rosenberg N, Witte, ON: Transformation of immature lymphoid cells by Abelson murine leukemia virus. Immunol Rev 1979; 48:3–22.

    Article  PubMed  CAS  Google Scholar 

  47. Alt F, Rosenberg N, Lewis S, Thomas E, Baltimore D: Organization and reorganization of immunoglobulin genes in A-MuLV-transformed cells: Rearrangement of heavy but not light chain genes. Cell 1981;27:381–390.

    Article  PubMed  CAS  Google Scholar 

  48. Nelson KJ, Kelley DE, Perry RP: Inducible transcription of the unrearranged κ constant region locus is a common feature of pre-B cells and does not require DNA or protein synthesis. Proc Natl Acad Sci USA 1985;82:5305–5309.

    Article  PubMed  CAS  Google Scholar 

  49. Chen Y-Y, Wang LC, Huang M-S, Rosenberg N: An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Genes Dev 1994;8:688–697.

    Article  PubMed  CAS  Google Scholar 

  50. Klemsz MJ, McKercher SJ, Celada A, Van Beveren C, Maki RA: The macrophage and B cell-specific transcription factor PU. 1 is related to the ets oncogene. Cell 1990;61:113–124.

    Article  PubMed  CAS  Google Scholar 

  51. Goebl MG: The PU. 1 transcription factor is the product of the putative oncogeneSpi-1. Cell 1990;61:1165–1166.

    Article  PubMed  CAS  Google Scholar 

  52. Moreau-Gachelin F, Tavitian A, Tambourin P:Spi-1 is a putative oncogene in virally induced murine erythroleukemias. Nature 1988;331:277–280.

    Article  PubMed  CAS  Google Scholar 

  53. Schuetze S, Stenberg PE, Kabat D: The Ets-related transcription factor PU-1 immortalizes erythroblasts. Mol Cell Biol 1993;13:5670–5678.

    PubMed  CAS  Google Scholar 

  54. Galson DL, Hensold JO, Bishop TR, Schalling M, D'Andrea AD, Jones C, Auron PE, Housman DE: Mouse b-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU. 1, and is restricted in expression to hematopoietic cells and the testis. Mol Cell Biol 1993;13:2929–2941.

    PubMed  CAS  Google Scholar 

  55. Maxleod K, Leprince D, Stehelin D: Theets gene family. Trends Biochem Sci 1992;17:251–256.

    Article  Google Scholar 

  56. Hromas R, Orazi A, Neiman RS, Maki R, Van Beveran C, Moore J, Klemsz M: Hematopoietic lineage-and stage-restricted expression of the ETS oncogene family memberPU. 1. Blood 1993;82:2998–3004.

    PubMed  CAS  Google Scholar 

  57. Nelsen B, Tian G, Erman B, Gregoire J, Maki R, Graves B, Sen R: Regulation of lymphoid-specific immunoglobulin μ heavy chain gene enhancer by ETS domain proteins. Science 1993;261:82–86.

    Article  PubMed  CAS  Google Scholar 

  58. Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML: PU. 1 recruits a second nuclear factor to a site important for immunoglobulin k 3′ enhancer activity. Mol Cell Biol 1992;12:368–378.

    PubMed  CAS  Google Scholar 

  59. Eisenbeis CF, Singh H, Storb U: PU. 1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin λ2–4 enhancer. Mol Cell Biol 1993;13:6452–6461.

    PubMed  CAS  Google Scholar 

  60. Hagman J, Grosschedl R: An inhibitory carboxyl-terminal domain in Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of themb-1 gene. Proc Natl Acad Sci USA 1992;89:8889–8893.

    Article  PubMed  CAS  Google Scholar 

  61. Feldhaus A, Mbangkollo D, Arvin KL, Klug CA, Singh H: BLyF, a novel cell-type- and stage-specific regulator of the B-lymphocyte gene. Mol Cell Biol 1992;12:1126–1133.

    PubMed  CAS  Google Scholar 

  62. Shin MK, Koshland ME: Ets-related protein PU. 1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dev 1993;7:20006–22015.

    Article  Google Scholar 

  63. Zhang DE, Hetherington CJ, Chen JM, Tenen DG: The macrophage transcription factor PU. 1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994;14:373–381.

    PubMed  CAS  Google Scholar 

  64. Pahl HL, scheibe RJ, Zhang DE, Chen HM, Galson DL, Maki RA, Tenen DG: The proto-oncogene PU. 1 regulates expression of the myeloid-specific CD11b promoter. J Biol Chem 1993;268:5014–5020.

    PubMed  CAS  Google Scholar 

  65. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992;68:869–877.

    Article  PubMed  CAS  Google Scholar 

  66. Shinaki Y, Rathbun G, Lam K, Oltz EM, Stewart V, Mendelson M, Charron J, Datta M, Young F, Stall AM, Alt FW: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68:855–867.

    Article  Google Scholar 

  67. Mucenski ML, Mclain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJ, Potter SS: A functionalc-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991;65:677–689.

    Article  PubMed  CAS  Google Scholar 

  68. Palacios R, Imhof BA: At day 8–8.5 of mouse development the yolk sac, not the embryo proper, has lymphoid precursor potential in vivo and in vitro. Proc Natl Acad Sci USA 1993;90:6581–6585.

    Article  PubMed  CAS  Google Scholar 

  69. Cumano A, Paige CJ, Iscove NN, Brady G: Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992;356:612–615.

    Article  PubMed  CAS  Google Scholar 

  70. Hirayama F, Shih JP, Awgulewitsch A, Warr GW, Clark SC, Ogawa M: Clonal proliferation of murine lymphohemopoietic progenators in culture. Proc Natl Acad Sci USA 1992;89:5907–5911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H. Genetic analysis of transcription factors implicated in B lymphocyte development. Immunol Res 13, 280–290 (1994). https://doi.org/10.1007/BF02935619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935619

Key Words

Navigation