Skip to main content
Log in

The role of protein kinase C and its neuronal substrates dephosphin, B-50, and MARCKS in neurotransmitter release

  • Basic Molecular Aspects of Synaptic Plasticity
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This article focuses on the role of protein phosphorylation, especially that mediated by protein kinase C (PKC), in neurotransmitter release. In the first part of the article, the evidence linking PKC activation to neurotransmitter release is evaluated. Neurotransmitter release can be elicited in at least two manners that may involve distinct mechanisms:Evoked release is stimulated by calcium influx following chemical or electrical depolarization, whereasenhanced release is stimulated by direct application of phorbol ester or fatty acid activators of PKC. A markedly distinct sensitivity of the two pathways to PKC inhibitors or to PKC downregulation suggests that onlyenhanced release is directly PKC-mediated. In the second part of the article, a framework is provided for understanding the complex and apparently contrasting effects of PKC inhibitors. A model is proposed whereby the site of interaction of a PKC inhibitor with the enzyme dictates the apparent potency of the inhibitor, since the multiple activators also interact with these distinct sites on the enzyme. Appropriate PKC inhibitors can now be selected on the basis of both the PKC activator used and the site of inhibitor interaction with PKC. In the third part of the article, the known nerve terminal substrates of PKC are examined. Only four have been identified, tyrosine hydroxylase, MARCKS, B-50, and dephosphin, and the latter two may be associated with neurotransmitter release. Phosphorylation of the first three of these proteins by PKC accompanies release. B-50 may be associated withevoked release since antibodies delivered into permeabilized synaptosomes blockevoked, but not enhanced release. Dephosphin and its PKC phosphorylation may also be associated withevoked release, but in a unique manner. Dephosphin is a phosphoprotein concentrated in nerve terminals, which, upon stimulation of release, is rapidly dephosphorylated by a calcium-stimulated phosphatase (possibly calcineurin [CN]). Upon termination of the rise in intracellular calcium, dephosphin is phosphorylated by PKC. A priming model of neurotransmitter release is proposed where PKC-mediated phosphorylation of such a protein is an obligatory step thatprimes the release apparatus, in preparation for a calcium influx signal. Protein dephosphorylation may therefore be as important as protein phosphorylation in neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

CaM:

calmodulin

CaM-PK:

calmodulin-dependent protein kinase

CN:

calcineurin

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

PLA2 :

phospholipase A2

PMA:

phorbol 12-myristate 13-acetate

PS:

l-phosphatidyl-l-serine

References

  • Abdul-Ghani M., Kravitz E. A., Meiri H., and Rahamimoff R. (1991) Protein phosphatase inhibitor okadaic acid enhances transmitter release at neuromuscular junctions.Proc. Natl. Acad. Sci. USA 88, 1803–1807.

    PubMed  CAS  Google Scholar 

  • Aderem A. A., Albert K. A., Keum M. M., Wang J. K., Greengard P., and Cohn Z. A. (1988) Stimulus-dependent myristoylation of a major substrate for protein kinase C.Nature 332, 362–364.

    PubMed  CAS  Google Scholar 

  • Akers R. F. and Routtenberg A. (1987) Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity.J. Neurosci. 7, 3976–3983.

    PubMed  CAS  Google Scholar 

  • Albert K. A., Helmer-Matyjek E., Nairn A. C., Muller T. H., Haycock J. W., Goldstein M., and Greengard P. (1984a) Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase.Proc. Natl. Acad. Sci. USA 81, 7713–7717.

    PubMed  CAS  Google Scholar 

  • Albert K. A., Wu W. C., Nairn A. C., and Greengard P. (1984b) Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation.Proc. Natl. Acad. Sci. USA 81, 3622–3625.

    PubMed  CAS  Google Scholar 

  • Albert K. A., Nairn A. C., and Greengard P. (1987) The 87-kDa protein, a major specific substrate for protein kinase C: purification from bovine brain and characterization.Proc. Natl. Acad. Sci. USA 84, 7046–7050.

    PubMed  CAS  Google Scholar 

  • Alexander K. A., Cimler B. M., Meier K. F., and Storm D. R. (1987) Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein.J. Biol. Chem. 262, 6108–6113.

    PubMed  CAS  Google Scholar 

  • Alexander K. A., Wakim B. T., Doyle G. S., Walsh K. A., and Storm D. R. (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein.J. Biol. Chem. 263, 7544–7549.

    PubMed  CAS  Google Scholar 

  • Allgaier C., Daschmann, B., Huang, H. Y., and Hertting G. (1988) Protein kinase C and presynaptic modulation of acetylcholine release in rabbit hippocampus.Br. J. Pharmacol. 93, 525–534.

    PubMed  CAS  Google Scholar 

  • Allgaier C. and Hertting G. (1986) Polymyxin B, a selective inhibitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12,13-butyrate.Naunyn Schmiedebergs Arch. Pharmacol. 334, 218–221.

    PubMed  CAS  Google Scholar 

  • Allgaier C., Hertting G., Huang H. Y., and Jackisch R. (1987) Protein kinase C activation and alpha 2-autoreceptor-modulated release of noradrenaline.Br. J. Pharmacol. 92, 161–172.

    PubMed  CAS  Google Scholar 

  • Almers W. (1990) Exoctyosis.Annu. Rev. Physiol. 52, 607–624.

    PubMed  CAS  Google Scholar 

  • Almers W. and Tse F. W. (1990) Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis.Neuron 4, 813–818.

    PubMed  CAS  Google Scholar 

  • Andreasen T. J., Luetje C. W., Heideman W., and Storm D. R. (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes.Biochemistry 22, 4615–4618.

    PubMed  CAS  Google Scholar 

  • Apel E. D., Byford M. F., Au D., Walsh K. A., and Storm D. R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin.Biochemistry 29, 2330–2335.

    PubMed  CAS  Google Scholar 

  • Arcoleo J. P. and Weinstein I. B. (1985) Activation of protein kinase C by tumor promoting phorbol esters, teleocidin and aplysiatoxin in the absence of added calcium.Carcinogenesis 6, 213–217.

    PubMed  CAS  Google Scholar 

  • Asakura T. and Matsuda M. (1984) Efflux of gamma-aminobutyric acid from and appearance of free arachidonic acid inside synaptosomes.Biochim. Biophys. Acta 773, 301–307.

    PubMed  CAS  Google Scholar 

  • Ashendal D. L. (1985) The phorbol ester receptor: a phospholipid-regulated protein kinase.Biochim. Biophys. Acta 822, 219–242.

    Google Scholar 

  • Augustine G. J., Charlton M. P., and Smith S. J. (1987) Calcium action in synaptic transmitter release.Annu. Rev. Neurosci. 10, 633–693.

    PubMed  CAS  Google Scholar 

  • Baudier J., Bronner C., Kligman D., and Cole R. D. (1989) Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein.J. Biol. Chem. 264, 1824–1828.

    PubMed  CAS  Google Scholar 

  • Baudier J., Deloulme J. C., Van Dorsselaer A., Black D., and Matthes H. W. D. (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain.J. Biol. Chem. 266, 229–237.

    PubMed  CAS  Google Scholar 

  • Bazzi M. D. and Nelsestuen G. L. (1988) Properties of membrane-inserted protein kinase C.Biochemistry 27, 7589–7593.

    PubMed  CAS  Google Scholar 

  • Bazzi M. D. and Nelsestuen G. L. (1989) Differences in the effects of phorbol esters and diacylglycerols on protein kinase C.Biochemistry 28, 9317–9323.

    PubMed  CAS  Google Scholar 

  • Bishop W. R., Petrin J., Wang L., Ramesh U., and Doll R. J. (1990) Inhibition of protein kinase C by the tyrosine kinase inhibitor erbstatin.Biochem. Pharmacol. 40, 2129–2135.

    PubMed  CAS  Google Scholar 

  • Boscá L., Diaz-Guerra M. J., and Mojena M. (1989) Oleate-induced translocation of protein kinase C to hepatic microsomal membranes.Biochem. Biophys. Res. Commun. 160, 1243–1249.

    PubMed  Google Scholar 

  • Bradford P. G., Marinetti G. V., and Abood L. G. (1983) Stimulation of phospholipase A2 and secretion of catecholamines from brain synaptosomes by potassium and A23187.J. Neurochem. 41, 1684–1693.

    PubMed  CAS  Google Scholar 

  • Brooks J. C. and Brooks M. (1985) Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells.Life. Sci. 37, 1869–1875.

    PubMed  CAS  Google Scholar 

  • Brooks J. C., Treml S., and Brooks M. (1984) Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells.Life. Sci. 35, 569–574.

    PubMed  CAS  Google Scholar 

  • Burgoyne R. D. (1990) Secretory vesicle-associated proteins and their role in exocytosis.Annu. Rev. Physiol. 52, 647–659.

    PubMed  CAS  Google Scholar 

  • Burgoyne R. D., Morgan A., and O'Sullivan A. J. (1988) A major role for protein kinase C in calciumactivated exocytosis in permeabilized adrenal chromaffin cells.FEBS Lett. 238, 151–155.

    PubMed  CAS  Google Scholar 

  • Calalb M. B., Kincaid R. L., and Soderling T. R. (1990) Phosphorylation of calcineurin: Effect on calmodulin binding.Biochem. Biophys. Res. Commun. 172, 551–556.

    PubMed  CAS  Google Scholar 

  • Chakravarty N. (1990) The role of protein kinase C in histamine secretion from mast cells.Acta. Physiol. Scand. 139, 319–331.

    PubMed  CAS  Google Scholar 

  • Chakravarty N., Kjeldsen B., Hansen M., and Nielsen E. H. (1990) The involvement of protein kinase C in exocytosis in mast cells.Exp. Cell.Res. 186, 245–249.

    PubMed  CAS  Google Scholar 

  • Chandler L. J. and Leslie S. W. (1989) Protein kinase C activation enhances K+-stimulated endogenous dopamine release from rat striatal synaptosomes in the absence of an increase in cytosolic Ca2+.J. Neurochem 52, 1905–1912.

    PubMed  CAS  Google Scholar 

  • Chang J., Musser J. H., and McGregor H. (1987) Phospholipase A2: function and pharmacological regulation.Biochem. Pharmacol. 36, 2429–2436.

    PubMed  CAS  Google Scholar 

  • Chang J. P., Graeter J., and Catt K. J. (1986) Coordinate actions of arachidonic acid and protein kinase C in gonatotropin-releasing hormone-stimulated secretion of luteinizing hormone.Biochem. Biophys. Res. Commun. 134, 134–139.

    PubMed  CAS  Google Scholar 

  • Chao S.-H., Suzuki Y., Zysk J. R., and Cheung W. Y. (1984) Activation of calmodulin by various metal cations as a function of ionic radius.Mol. Pharmacoi. 26, 75–82.

    CAS  Google Scholar 

  • Chowdhury M. and Fillenz M. (1989) K+-dependent stimulation of dopamine synthesis in striatal synaptosomes is mediated by protein kinase C.J. Neurochem. 50, 624–629.

    Google Scholar 

  • Cimler B. M., Andreasen T. J., Andreasen K. I., and Storm D. R. (1985) P-57 is a neural specific calmoduin-binding protein.J. Biol. Chem. 260, 10,784–10,788.

    CAS  Google Scholar 

  • Cimler B. M., Giebelhaus D. H., Wakim B. T., Storm D. R., and Moon R. T. (1987) Characterization of murine cDNAs encoding P-57, a neural—specific calmodulin-binding protein.J. Biol. Chem. 262, 12,158–12,163.

    CAS  Google Scholar 

  • Coggins P. J. and Zwiers H. (1991) B-50 (GAP-43): biochemistry and functional neurochemistry of a neuron-specific phosphoprotein.J. Neurochem. 56, 1095–1106.

    PubMed  CAS  Google Scholar 

  • Colby K. A. and Blaustein M. P. (1988) Inhibition of voltage-gated K channels in synaptosomes by sn-1,2-dioctanoylglycerol, an activator of protein kinase C.J. Neurosci. 8, 4685–4692.

    PubMed  CAS  Google Scholar 

  • Colby K. A., Thompson T. L., and Patrick R. L. (1989) Tyrosine hydroxylase phosphorylation in rat brain striatal synaptosomes.Brain. Res. 478, 103–111.

    PubMed  CAS  Google Scholar 

  • Cote A., Doucet J. P., and Trifaro J. M. (1986) Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation.Neuroscience 19, 629–645.

    PubMed  CAS  Google Scholar 

  • Couturier A., Bazgar S., and Castagna M. (1984) Further characterization of tumor-promoter-mediated activation of protein kinase C.Biochem. Biophys. Res. Commun. 121, 448–455.

    PubMed  CAS  Google Scholar 

  • Crosland R. D., Martin J. V., and McClure W. O. (1983) Effect of liposomes containing various divalent cations on the release of acetylcholine from synaptosomes.J. Neurochem. 40, 681–687.

    PubMed  CAS  Google Scholar 

  • Daschmann B., Allgaier C., Nakov R., and Hertting G. (1988) Staurosporine counteracts the phorbol ester-induced enhancement of neurotransmitter release in hippocampus.Arch. Int. Pharmacodyn. Ther. 296, 232–245.

    PubMed  CAS  Google Scholar 

  • Davis M. E. N. and Patrick R. L. (1990) Diacylglycerolinduced stimulation of neurotransmitter release from rat brain striatal synaptosomes.J. Neurochem. 54, 662–668.

    PubMed  CAS  Google Scholar 

  • De Camilli P. and Jahn R. (1990) Pathways to regulated exocytosis in neurons.Annu. Rev. Physiol. 52, 625–645.

    PubMed  Google Scholar 

  • De Graan P. N. E., Dekker L. V., Oestreicher A. B., Van der Voom L., and Gispen W. H. (1989) Determination of changes in the phosphorylation state of the neuron-specific protein kinase C substrate B-50 (GAP43) by quantitative immunoprecipitation.J. Neurochem. 52, 17–23.

    PubMed  Google Scholar 

  • De Graan P. N. E., Oestreicher A. B., De Wit M., Kroef M., Schrama L. H., and Gispen W. H. (1990) Evidence for the binding of calmodulin to endogenous B-50 (GAP-43) in native synaptosomal plasma membranes.J. Neurochem. 55, 2139–2141.

    PubMed  Google Scholar 

  • De la Escalera G. M., Porter B. W., Martin T. F. J., and Weiner R. I. (1989) Dopamine withdrawal and addition of thyrotropin-releasing hormone stimulate membrane translocation of protein kinase-C and phosphorylation of an endogenous 80K substrate in enriched lactotrophs.Endocrinology 125, 1168–1173.

    Google Scholar 

  • Dekker L. V., De Graan P. N. E., Oestreicher A. B., Versteeg D. H. G., and Gispen W. H. (1989a) Inhibition of noradrenaline release by antibodies to B-50 (GAP-43).Nature 342, 74–76.

    PubMed  CAS  Google Scholar 

  • Dekker L. V., De Graan P. N. E., Versteeg D. H. G., Oestreicher A. B., and Gispen W. H. (1989b) Phosphorylation of B-50 (GAP43) is correlated with neurotransmitter release in rat hippocampal slices.J. Neurochem. 52, 24–30.

    PubMed  CAS  Google Scholar 

  • Dekker L. V., De Graan P. N. E., De Wit M., Hens J. J. H., and Gispen W. H. (1990a) Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes.J. Neurochem. 54, 1645–1652.

    PubMed  CAS  Google Scholar 

  • Dekker L. V., De Graan P. N. E., Spierenburg H., De Wit M., Versteeg D. H. C., and Gispen W. H. (1990b) Evidence for a relationship between B-50 (GAP-43) and [3H] noradrenaline release in rat brain synaptosomes.Eur. J. Pharmacol. Mol. Pharmacol. 188, 113–122.

    CAS  Google Scholar 

  • Dekker L. V., De Graan P. N. E., and Gispen W. H. (1991a) Transmitter release: target of regulation by protein kinase C?Prog. Brain. Res. 89, 209–233.

    PubMed  CAS  Google Scholar 

  • Dekker L. V., De Graan P. N. E., Pijnappel P., Oestreicher A. B., and Gispen W. H. (1991b) Noradrenaline release from streptolysis Opermeated rat cortical synaptosomes: effects of calcium, phorbol esters, protein kinase inhibitors, and anti-bodies to the neuron-specific protein kinase C substrate B-50 (GAP-43). J. Neurochem.56, 1146–1153.

    PubMed  CAS  Google Scholar 

  • Dell K. R. and Severson D. L. (1989) Effect ofcis-unsaturated fatty acids on aortic protein kinase C activity.Biochem. J. 158, 171–175.

    Google Scholar 

  • DeLorenzo R. J. (1981) The calmodulin hypothesis of neurotransmission.Cell Calcium. 2, 365–385.

    PubMed  CAS  Google Scholar 

  • DeRiemer S. A., Strong J. A., Albert K. A., Greengard P., and Kaczmarek I. K. (1985) Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C.Nature 313, 313–316.

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra M. J., Sanchez-Prieto J., Boscá L., Pocock J., Barrie A., and Nicholls D. (1988) Phorbol ester translocation of protein kinase C in guinea-pig synaptosomes and the potentiation of calcium-dependent glutamate release.Biochim. Biophys. Acta 970, 157–165.

    PubMed  CAS  Google Scholar 

  • Doermer D., Pitler T. A., and Alger B. E. (1988) Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons.J. Neurosci. 8, 4069–4078.

    Google Scholar 

  • Dokas L. A., Pisano M. R., Schrama L. H., Zwiers H., and Gispen W. H. (1990) Dephosphorylation of B-50 in synaptic plasma membranes.Brain Res. Bull. 24, 321–329.

    PubMed  CAS  Google Scholar 

  • Dunkley P. R. (1992) Autophosphorylation of calcium calmodulin-stimulated protein kinase II.Mol. Neurobiol. Vol. 5, this issue.

  • Dunkley P. R., Baker C. M., and Robinson P. J. (1986) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: characterization of active protein kinases by phosphopeptide analysis of substrates.J. Neurochem. 46, 1692–1703.

    PubMed  CAS  Google Scholar 

  • Dunkley P. R. and Robinson P. J. (1986) Depolarization-dependent protein phosphorylation in synaptosomes: mechanisms and significace.Prog. Brain. Res. 69, 273–293.

    PubMed  CAS  Google Scholar 

  • EI Touny S., Khan W., and Hannun Y. (1990) Regulation of platelet protein kinase C by oleic acid. Kinetic analysis of allosteric regulation and effects on autophosphorylation, phorbol esler binding, and susceptibility to inhibition.J. Biol. Chem. 265, 16,437–16,443.

    Google Scholar 

  • Fan X. T., Huang X. P., Da Silva C., and Castagna M. (1990) Arachidonic acid and related methyl ester mediate protein kinase C activation in intact platelets through the arachidonate metabolism pathways.Biochem. Biophys. Res. Commun. 169, 933–940.

    PubMed  CAS  Google Scholar 

  • Feuerstein T. J., Allgaier C., and Hertting G. (1987) Possible involvement of protein kinase C (PKC) in the regulation of electrically evoked serotonin (5-HT) release from rabbit hippocampal slices.Eur. J. Pharmacol. 139, 267–272.

    PubMed  CAS  Google Scholar 

  • Finch D. M. and Jackson M. B. (1990) Presynaptic enhancement of synaptic transmission in hippocampal cell cultures by phorbol esters.Brain Res. 518, 269–273.

    PubMed  CAS  Google Scholar 

  • Fischer von Mollard G., Südhof T. C., and Jahn R. (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis.Nature 349, 79–81.

    Google Scholar 

  • Floor E. and Feist B. E. (1989) Most synaptic vesicles isolated from rat brain carry three membrane proteins, SV2, synaptophysin, and p65.J. Neurochem. 52, 1433–1437.

    PubMed  CAS  Google Scholar 

  • Fournier S., Novas M. L., and Trifaro J. M. (1989) Subcellular distribution of 65,000 calmodulin-binding protein (p65) and synaptophysin (p38) in adrenal medulla.J. Neurochem. 53, 1043–1049.

    PubMed  CAS  Google Scholar 

  • Gerrard J. M., Beattie L. L., Park J., Israels S. J., McNicol A., Lint D., and Cragoe E. J., Jr. (1989) A role for protein kinase C in the membrane fusion necessary for platelet granule secretion.Blood 74, 2405–2413.

    PubMed  CAS  Google Scholar 

  • Gispen W. H. (1986) Phosphoprotein B-50 and phosphoinositides in brain synaptic plasma membranes: a possible feedback relationship.Biochem. Soc. Trans. 14, 163–165.

    PubMed  CAS  Google Scholar 

  • Gispen W. H., Nielander H. B., De Graan P. N. E., Oestreicher A. B., Schrama L. H., and Schotman P. (1992) The role of the growth-associated protein B-50/GAP-43 in neuronal plasticity.Mol. Neurobiol. Vol. 5, this issue.

  • Gomez-Puertas P., Martinez-Serrano A., Blanco P., Satrústegui J., and Bogõnez E. (1991) Conditions restricting depolarization-dependent calcium influx in synaptosomes reveal a graded response of P96 dephosphorylation and a transient dephosphorylation of P65.J. Neurochem. 56, 2039–2047.

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R., Barsky S. H., Thomas T. P., and Anderson W. B. (1986) Factors influencing chelatorstable, detergent-extractable, phorbol diesterinduced membrane association of protein stabilized membrane bindings of protein kinase C.J. Biol. Chem. 261, 16,438–16,445.

    CAS  Google Scholar 

  • Graff J. M., Stumpo D. J., and Blackshear P. J. (1989a) Molecular cloning, sequence, and expression of a cDNA encoding the chicken myristoylated alaninerich C kinase substrate (MARCKS).Mol. Endocrinol. 3, 1903–1906.

    PubMed  CAS  Google Scholar 

  • Graff J. M., Stumpo D. J., and Blackshear P. J. (1989b) Characterization of the phosphorylation sites in the chicken and bovine myristoylated alanine-rich C kinase substrate protein, a prominent cellular substrate for protein kinase C.J. Biol. Chem. 264, 11,912–11,919.

    CAS  Google Scholar 

  • Graff J. M., Gordon J. I., and Blackshear P. J. (1989c) Myristoylated and nonmyristoylated forms of a protein are phosphorylated by protein kinase C.Science 246, 503–506.

    PubMed  CAS  Google Scholar 

  • Graff J. M., Young T. N., Johnson J. D., and Blackshear P. J. (1989d) Phosphorylation-regulated calmodulin binding to a prominent cellular substrate for protein kmase C.J. Biol. Chem. 264, 21,818–21,823.

    CAS  Google Scholar 

  • Greenberg D. A., Carpenter C. L., and Messing R. O. (1987) Interaction of calmodulin inhibitors and protein kinase C inhitors with voltage-dependent calcium channels.Brain Res. 404, 401–404.

    PubMed  CAS  Google Scholar 

  • Grove D. S. and Mastro A. M. (1988) Prevention of the TPA-mediated down-regulation of protein kinase C.Biochem. Biophys. Res. Commun. 151, 94–99.

    PubMed  CAS  Google Scholar 

  • Gschwendt M., Kittstein W., Mieskes G., and Marks F. (1989) A type 2A protein phosphatase dephosphorylates the elongation factor 2 and is stimulated by the phorbol ester TPA in mouse epidermis in vivo.FEBS Lett. 257, 357–360.

    PubMed  CAS  Google Scholar 

  • Guillemette G., Favreau I., Lamontagne S., and Boulay G. (1990) 2,3-Diphosphoglycerate is a nonselective inhibitor of inositol 1,4,5-trisphosphate action and metabolism.Eur. J. Pharmacol. Mol. Pharmacol. 188, 251–260.

    CAS  Google Scholar 

  • Guitart X., Marsal J., and Solsna C. (1990) Phorbol esters induce neurotransmitter release in cholinergic synaptosomes from Torpedo electric organ.J. Neurochem. 55, 468–472.

    PubMed  CAS  Google Scholar 

  • Halenda S. P., Banga H. S., Zavoico G. B., Lau L.-F., and Feinstein M. B. (1989) Synergistic release of arachidonic acid from platelets by activators of protein kinase C and Ca2+ ionophores. Evidence for the role of protein phosphorylation in the activation of phospholipase A2 and independence from the Na+/H+ exchanger.Biochemistry 28, 7356–7363.

    PubMed  CAS  Google Scholar 

  • Halpain S. and Greengard P. (1990) Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2.Neuron 5, 237–246.

    PubMed  CAS  Google Scholar 

  • Halpain S., Girault J.-A., and Greengard P. (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices.Nature,343, 369–372.

    PubMed  CAS  Google Scholar 

  • Hammond C., Paupardin-Tritsch D., Nairn A. C., Greengard P., and Gerschenfeld H. M. (1987) Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C.Nature 325, 809–811.

    PubMed  CAS  Google Scholar 

  • Hannun Y. A. and Bell R. M. (1988) Aminoacridines, potent inhibitors of protein kinase C.J. Biol. Chem. 263, 5124–5131.

    PubMed  CAS  Google Scholar 

  • Hannun Y. A., Loomis C. R., Merrill A. H., Jr., and Bell R. M. (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate, binding in vitro and in human platelets.J. Biol. Chem. 261, 12,604–12,609.

    CAS  Google Scholar 

  • Hansson A. and Ingelman-Sundberg M. (1987) Modulation of the substrate specificity of purified human protein kinase C by its activators.Acta Chem. Scand. B41, 174–179.

    CAS  Google Scholar 

  • Hansson A., Serhan C. N., Haeggstrom J., Ingelman-Sundberg M., Samuelsson B., and Morris J. (1986) Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenated products of arachidonic acid.Biochem. Biophys. Res. Commun. 134, 1215–1222.

    PubMed  CAS  Google Scholar 

  • Harper J. F. (1988) Stimulus-secretion coupling: Second messenger-regulated exocytosis.Adv. Second Messenger Phosphoprotein Res. 22, 193–318.

    PubMed  CAS  Google Scholar 

  • Hashimoto Y. and Soderling T. R. (1989) Regulation of calcineurin by phosphorylation. Identification of the regulatory site phosphorylated by Ca2+/ calmodulin-dependent protein kinase II and protein kinase C.J. Biol. Chem. 264, 16,524–16,529.

    CAS  Google Scholar 

  • Hashimoto Y., Perrino B. A., and Soderling T. R. (1990) Identification of an autoinhibitory domain in calcineurin.J. Biol. Chem. 265, 1924–1927.

    PubMed  CAS  Google Scholar 

  • Hauptmann M., Wilson D. F., and Erecinska M. (1985) Effects of ATP gamma S in isolated rat brain synaptosomes.Biochem. Pharmacol. 34, 1247–1254.

    PubMed  CAS  Google Scholar 

  • Haycock J. W. (1987) Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum.Brain Res. Bull. 19, 619–622.

    PubMed  CAS  Google Scholar 

  • Haycock J. W. (1990) Phosphorylation of tyrosine hydroxylasein situ at serine 8, 19, 31, and 40.J. Biol. Chem. 265, 11,682–11,691.

    CAS  Google Scholar 

  • Haystead T. A. J., Sim A. T. R., Carling D., Honner R. C., Tsukitani Y., Cohen P., and Hardie D. G. (1989) Effects of the tumor promotor okadaic acid on intracellular protein phosphorylation and metabolism.Nature 337, 78–81.

    PubMed  CAS  Google Scholar 

  • Heemskerk F. M., Schrama L. H., De Graan P. N., and Gispen W. H. (1990) 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation in rat synaptosomes.J. Mol. Neurosci. 2, 11–17.

    PubMed  CAS  Google Scholar 

  • Hegemann L., Van Rooijen L. A. A., Traber J., and Schmidt B. H. (1991) Polymyxin B is a selective and potent antagonist of calmodulin.Eur. J. Pharmacol. Mol. Pharmacol. 207, 17–22.

    CAS  Google Scholar 

  • Herbert J. M., Augereau J. M., Gleye J., and Maffrand J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C.Biochem. Biophys. Res. Commun. 172, 993–999.

    PubMed  CAS  Google Scholar 

  • Hidaka H.,and Hagiwara M. (1987) Pharmacology of the isoquinoline sulfonamide protein kinase C inhibitors.TIPS 8, 162–164.

    CAS  Google Scholar 

  • Hidaka H., Inagaki M., Kawamoto S., and Sasaki Y. (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide-dependent protein kinase and protein kinase C.Biochemistry 23, 5036–5041.

    PubMed  CAS  Google Scholar 

  • Holz R. W., Bittner M. A., Peppers S. C., Senter R. A., and Eberhard D. A. (1989) MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis.J. Biol. Chem. 264, 5412–5419.

    PubMed  CAS  Google Scholar 

  • House C. and Kemp B. E. (1987) Protein kinase C contains a pseudosubstrate prototope in its regulatory domain.Science 238, 1726–1728.

    PubMed  CAS  Google Scholar 

  • House C., Robinson P. J., and Kemp B. E. (1989) A synthetic peptide analog of the putative substratebinding motif activates protein kinase C.FEBS Lett. 249, 243–247.

    PubMed  CAS  Google Scholar 

  • Howell T. W., Kramer I. M., and Gomperts B. D. (1989) Protein phosphorylation and the dependence on calcium and GTP-gamma-S for exocytosis from permeabilized mast cells.Cell. Signalling 1, 157–163.

    PubMed  CAS  Google Scholar 

  • Hu G. Y., Hvalby O. Walaas S. I., Albert K. A., Skjeflo P., Andersen P., and Greengard P. (1987) Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation.Nature 328, 426–429.

    PubMed  CAS  Google Scholar 

  • Huang H. Y., Allgaier C., Hertting G., and Jackisch R. (1988) Phorbol ester-mediated enhancement of hippocampal noradrenaline release: which ion channels are involved.Eur. J. Pharmacol. 153, 175–184.

    PubMed  CAS  Google Scholar 

  • Huttner W. B. and Greengard P. (1979) Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium.Proc. Natl. Acad. Sci. USA 76, 5402–5406.

    PubMed  CAS  Google Scholar 

  • Isakov N. (1988) Regulation of T-cell-derived protein kinase C activity by vitamin A derivatives.Cell Immunol. 115, 288–298.

    PubMed  CAS  Google Scholar 

  • Israel M., Meunier F. M., Morel N., and Lesbats B. (1987) Calcium-induced desensitization of acetylcholine release from synaptosomes or proteo-iposomes equipped with mediatophore, a presynaptic membrane protein.J. Neurochem. 49, 975–982.

    PubMed  CAS  Google Scholar 

  • Israel M., Lesbats B. Morel N., Manaranche R., and LeGal la Salle G. (1988) Is the acetylcholine releasing protein mediatophore present in rat brain?FEBS Lett. 233, 421–426.

    PubMed  CAS  Google Scholar 

  • Jahn R., Hell J., and Maycox P. R. (1990) Synaptic vesicles: key organelles involved in neurotransmission.J. Physiol. (Paris) 84, 128–133.

    CAS  Google Scholar 

  • Jones P. M., Salmon D. M., and Howell S. L. (1988) Protein phosphorylation in electrically permeabilized islets of langerhans.Biochem. J. 254, 397–403.

    PubMed  CAS  Google Scholar 

  • Jork R, De Graan P. N., van Dongen C. J., Zwiers H., Matthies H. J., and Gispen W. H. (1984) Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metabolism in rat hippocampus.Brain. Res. 291, 73–81.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L. K. (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release.TINS 10, 30–34.

    CAS  Google Scholar 

  • Kandasamy S. B. and Hunt W. A. (1990) Arachidonic acid and prostaglandins enhance potassium-stimulated calcium influx into rat brain synaptosomes.Neuropharmacology 29, 825–829.

    PubMed  CAS  Google Scholar 

  • Karli U. O., Schafer T., and Burger M. M. (1990) Fusion of neurotransmitter vesicles with target membrane is calcium independent in a cell-free system.Proc. Natl. Acad. Sci. USA 87, 5912–5915.

    PubMed  CAS  Google Scholar 

  • Karns L. R., Ng S.-C., Freeman J. A., and Fishman M. C. (1987) Cloning of complementary DNA for GAP-43, a neuronal growth-related protein.Science 236, 597–600.

    PubMed  CAS  Google Scholar 

  • Kato S., Ishita S., Mawatari K., Matsukawa T., and Negishi K. (1990) Dopamine release via protein kinase C activation in the fish retina.J. Neurochem. 54, 2082–2090.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. (1992) Calmodulin-dependent protein kinase II: multifunctional roles in neuronal differentiation and synaptic plasticity.Mol. Neurobiol. Vol. 5, this issue.

  • Kelly R. B. (1988) The cell biology of the nerve terminal.Neuron 1, 431–438.

    PubMed  CAS  Google Scholar 

  • Kenigsberg R. L. and Trifaro J. M. (1985) Micro-injection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation.Neuroscience 14, 335–347.

    PubMed  CAS  Google Scholar 

  • Kennedy M. B. and Greengard P. (1981) Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites.Proc. Natl. Acad. Sci. USA 78, 1293–1297.

    PubMed  CAS  Google Scholar 

  • King M. M. and Huang C. Y. (1983) Activation of calcineurin by nickel ions.Biochem. Biophys. Res. Commun. 114, 955–961.

    PubMed  CAS  Google Scholar 

  • Kiss Z. and Luo Y. (1986) Phorbol ester and 1,2-diolein are not fully equivalent activators of protein kinase C in respect to phosphorylation of membrane proteins in vitro.FEBS Lett. 198, 203–207.

    PubMed  CAS  Google Scholar 

  • Kiss Z., Deli E., Girard P. R., Pettit G. R., and Kuo J. F. (1987) Comparative effects of polymyxin B, phorbol ester and bryostatin on protein phosphorylation, protein kinase C translocation, phospholipid metabolism and differentiation of HL60 cells.Biochem. Biophys. Res. Commun. 146, 208–215.

    PubMed  CAS  Google Scholar 

  • Klee C. B. and Cohen P. (1988) The calmodulin-regulated protein phosphatase, in, Cohen P., Klee C. B., eds.,Molecular Aspects of Cellular Regulation, vol. 5: Calmodulin. Elsevier, Amsterdam, pp. 225–248.

    Google Scholar 

  • Knight D. E. (1987) Calcium and diacylglycerol control of secretion.Biosci. Rep. 7, 355–367.

    PubMed  CAS  Google Scholar 

  • Knight D. E. and Baker P. F. (1987) Exocytosis from the vesicle view point: an overview.Ann. NY Acad. Sci. 493, 504–523.

    PubMed  CAS  Google Scholar 

  • Knight D. E., Sugden D., and Baker P. F. (1988) Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells.J. Membr. Biol. 104, 21–34.

    PubMed  CAS  Google Scholar 

  • Knight D. E., Von Grafenstein H., and Athayde C. M. (1989) Calcium-dependent and calcium-independent exocytosis.TINS 12, 451–458.

    PubMed  CAS  Google Scholar 

  • Kocher M. and Clemetson K. J. (1991) Staurosporine both activates and inhibits serine/threonine kinases in human platelets.Biochem. J. 275, 301–306.

    PubMed  CAS  Google Scholar 

  • Koda Y., Wada A., Yanagihara N., Uezono Y., and Izumi F. (1989) cis-unsaturated fatty acids stimulate catecholamine secretion, tyrosine hydroxylase and protein kinase C in adrenal medullary cells.Neuroscience 29, 495–502.

    PubMed  CAS  Google Scholar 

  • Kreutter D., Caldwell A. B., and Morin M. J. (1985) Dissociation of protein kinase C activation from phorbol ester-induced maturation of HL-60 leukemia cells.J. Biol. Chem. 260, 5979–5984.

    PubMed  CAS  Google Scholar 

  • Kuhn D. M., Arthur R., Jr., Yoon H., and Sankaran K. (1990) Tyrosine hydroxylase in secretory granules from bovine adrenal medulla. Evidence for an integral membrane form.J. Biol. Chem. 265, 5780–5786.

    PubMed  CAS  Google Scholar 

  • Kumar R., Holian O., and Fiedler V. C. (1987) Interaction of phospholipids, retinoids and PMA with calcium, phospholipid-dependent protein kinase-catalyzed reaction in skin.Dermatological 175, 56–66.

    CAS  Google Scholar 

  • Kuo J. F., Schatzman R. C., Turner R. S., and Mazzei G. J. (1984) Phospholipid-sensitive Ca2+-dependent protein kinase: a major protein phosphorylation system.Mol. Cell. Endocrinol. 35, 65–73.

    PubMed  CAS  Google Scholar 

  • Leibersperger H., Gschwendt M., and Marks F. (1990) Purification and characterization of a calciumunresponsive, phorbol ester/phospholipid-activated protein kinase from porcine spleen.J. Biol. Chem. 265, 16,108–16,115.

    CAS  Google Scholar 

  • Liu Y. C. and Storm D. R. (1989) Dephosphorylation of neuromodulin by calcineurin.J. Biol. Chem. 264, 12,800–12,804.

    CAS  Google Scholar 

  • Llinas R., McGuinness T. L., Leonard C. S., Sugimori M., and Greengard P. (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse.Proc. Natl. Acad. Sci. USA 82, 3035–3039.

    PubMed  CAS  Google Scholar 

  • Lovinger D. M., Wong K. L., Murakami K., and Routtenberg A. (1987) Protein kinase C inhibitors eliminate hippocampal long-term potentiation.Brain Res. 46, 177–183.

    Google Scholar 

  • Lowe J. H. N., Huang C.-L., and Ives H. E. (1990) Sphingosine differentially inhibits activation of the Na+/H+ exchanger by phorbol esters and growth factors.J. Biol. Chem. 265, 7188–7194.

    PubMed  CAS  Google Scholar 

  • Lynch M. A. and Bliss T. V. (1986) Long-term potentiation of synaptic transmission in the hippocampus of the rat; effect of calmodulin and oleoyl-acetyl-glycerol on release of [3H]glutamate.Neurosci Lett. 65, 171–176.

    PubMed  CAS  Google Scholar 

  • Lynch M. A. and Voss K. L. (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue.J. Neurochem. 55, 215–221.

    PubMed  CAS  Google Scholar 

  • Malhotra R. K., Bhave S. V., Wakade T. D., and Wakade A. R. (1988) Protein kinase C of sympathetic neuronal membrane is activated by phorbol ester-correlation between transmitter release,45Ca2+ uptake, and the enzyme activity.J. Neurochem. 51, 967–974.

    PubMed  CAS  Google Scholar 

  • Masure H. R., Alexander K. A., Wakim B. T., and Storm D. R. (1986) Physicochemical and hydrodynamic characterization of P-57, a neurospecific calmodulin binding protein.Biochemistry 25, 7553–7560.

    PubMed  CAS  Google Scholar 

  • Matthies H. J., Palfrey H. C., and Miller R. J. (1988) Calmodulin-and protein phosphorylation-independent release of catecholamines from PC-12 cells.FEBS Lett 229, 238–242.

    PubMed  CAS  Google Scholar 

  • Matthies H. J. G., Palfrey H. C., Hirning L. D., and Miller R. J. (1987) Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release.J. Neurosci. 7, 1198–1206.

    PubMed  CAS  Google Scholar 

  • Mazzei G. J., Katoh N., and Kuo J. F. (1982) Polymyxin B is a more selective inhibitor for phospholipid-sensitive Ca2+-dependent protein kinase than for calmodulin-sensitive Ca2+-dependent protein kinase.Biochem. Biophys. Res. Commun. 109, 1129–1133.

    PubMed  CAS  Google Scholar 

  • McNeely T. B. and Turco S. J. (1987) Inhibition of protein kinase C activity by the Leishmania donovani lipophosphoglycan.Biochem. Biophys. Res. Commun. 148, 653–657.

    PubMed  CAS  Google Scholar 

  • Metz S. A. (1988) Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms Putative activation of Ca2+ mobilization and protein kinase C.Diabetes 37, 1453–1469.

    PubMed  CAS  Google Scholar 

  • Mitchell J. P., Hardie D. G., and Vulliet P. R. (1990) Site-specific phosphorylation of tyrosine hydroxylase after KCI depolarization and nerve growth factor treatment of PC12 cells.J. Biol. Chem. 265, 22,358–22,364.

    CAS  Google Scholar 

  • Momayezi M., Lumpert C. J., Kersken H., Gras U., Plattner H., Krinks M. H., and Klee C. B. (1987) Exocytosis induction in Paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion.J. Cell. Biol. 105, 181–189.

    PubMed  CAS  Google Scholar 

  • Morgan A. and Burgoyne R. D. (1990) Relationship between arachidonic acid release and Ca2+-dependent exocytosis in digitonin-permeabilized bovine adrenal chromaffin cells.Biochem. J. 271, 571–574.

    PubMed  CAS  Google Scholar 

  • Morris C. and Rozengurt E. (1988) Purification of a phosphoprotein from rat brain closely related to the 80k Da substrate of protein kinase C identified in Swiss 3T3 fibroblasts.FEBS Lett. 231, 311–316.

    PubMed  CAS  Google Scholar 

  • Murakami K., Chan S. Y., and Routtenberg A. (1986) Protein kinase C activation by cis-fatty acid in the absence of calcium and phospholipids.J. Biol. Chem. 261, 15,424–15,429.

    CAS  Google Scholar 

  • Nakadate T., and Blumberg P. M. (1987) Modulation by palmitoylcamitine of protein kinase C activation.Cancer Res. 47, 6537–6542.

    PubMed  CAS  Google Scholar 

  • Nakadate T., Jeng A. Y., and Blumberg P. M. (1988) Comparison of protein kinase C functional assays to clarify mechanisms of inhibitor action.Biochem. Pharmacol. 37, 1541–1545.

    PubMed  CAS  Google Scholar 

  • Naor Z., Shearman M. S., Kishimoto A., and Nishizuka Y. (1988) Calcium-independent activation of hypothalamic type I protein kinase C by unsaturated fatty acids.Mol. Endocrinol. 2, 1043–1048.

    PubMed  CAS  Google Scholar 

  • Nelsestuen G. L., and Bazzi M. D. (1991) Activation and regulation of protein kinase C enzymes.J. Bioenerg. Biomembr. 23, 43–61.

    PubMed  CAS  Google Scholar 

  • Neve R. L., Perrone-Bizzozero N. I., Finklestein S., Zwiers H., Bird E., Kurnit D. M., and Benowitz L. I. (1987) The neuronal grow-associated protein GAP-43 (B-50, FI): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs.Brain Res. 388, 177–183.

    PubMed  CAS  Google Scholar 

  • Nichols R. A., Haycock J. W., Wang J. K., and Greengard P. (1987) Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes.J. Neurochem. 48, 615–621.

    PubMed  CAS  Google Scholar 

  • Nichols R. A., Wu W. C.-S., Haycock J. W., and Greengard P. (1989) Introduction of impermeant molecules into synaptosomes using freeze/thaw permeabilization.J. Neurochem. 52, 521–529.

    PubMed  CAS  Google Scholar 

  • Nichols R. A., Sihra T. S., Czernik A. J., Nairn A. C., and Greengard P. (1990) Calcium/calmodulindependent protein kinase II increases glutamate and noradrenaline release from synaptosomes.Nature 343, 647–651.

    PubMed  CAS  Google Scholar 

  • Niedel J. E. and Blackshear P. J. (1986) Protein kinase C, inPhosphoinositides and Receptor Mechanisms, Putney J. W., Jr, ed., Alan R. Liss, New York, pp. 47–88.

    Google Scholar 

  • Neilander H. B., Schrama L. H., Van Rozen A. J., Kasperaitis M., Oestreicher A. B., Gispen W. H., and Schotman P. (1990) Mutation of serine 41 in the neuron-specific protein B-50 (GAP-43) prohibits phosphorylation by protein kinase C.J. Neurochem. 55, 1442–1445.

    Google Scholar 

  • Nishizuka Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation.Nature 334, 661–665.

    PubMed  CAS  Google Scholar 

  • O'Brian C. A. and Weinstein I. B. (1987) In vitro inhibition of rat brain protein kinase C by rhodamine 6G. Profound effects of the lipid cofactor on the inhibition of the enzyme.Biochem. Pharmacol. 36, 1231–1235.

    PubMed  Google Scholar 

  • O'Brian C. A., Ward N. E., Weinstein I. B., Bull A. W., and Marnett L. J. (1988) Activation of rat brain protein kinase C by lipid oxidation products.Biochem. Biophys. Res. Commun. 155, 1374–1380.

    PubMed  Google Scholar 

  • Oda T., Shearman M. S., and Nishizuka Y. (1991) Synaptosomal protein kinase C subspecies: B. Down-regulation promoted by phorbol ester and its effect on evoked norepinephrine release.J. Neurochem. 56, 1263–1269.

    PubMed  CAS  Google Scholar 

  • Ohta H., Tanaka T., and Hidaka H. (1988) Putative binding site (s) of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on protein kinase C.Biochem. Pharmacol. 37, 2704–2706.

    PubMed  CAS  Google Scholar 

  • Oishi K., Raynor R. L., Charp P. A., and Kuo J. F. (1988) Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction.J. Biol. Chem. 263, 6865–6871.

    PubMed  CAS  Google Scholar 

  • Ono Y., Fujii T., Igarashi K., Kuno T., Tanaka C., Kikkawa U., and Nishizuka Y. (1989) Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence.Proc. Natl. Acad. Sci. USA 86, 4868–4871.

    PubMed  CAS  Google Scholar 

  • Orgad S., Dudai Y., and Cohen P. (1987) The protein phosphatases of Drosophila melanogaster and their inhibitors.Eur. J. Biochem. 164, 31–38.

    PubMed  CAS  Google Scholar 

  • Ouimet C. C., Wang J. K., Walaas S. I., Albert K. A., and Greengard P. (1990) Localization of the MARCKS (87 kDa) protein, a major specific substrate for protein kinase C, in rat brain.J. Neurosci. 10, 1683–1698.

    PubMed  CAS  Google Scholar 

  • Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., and Ullrich A. (1986) The complete primary structure of protein kinase C-the major phorbol ester receptor.Science 233, 853–859.

    PubMed  CAS  Google Scholar 

  • Patel J. and Kligman D. (1987) Purification and characterization of an Mr87,000 protein kinase C substrate from rat brain.J. Biol. Chem. 262, 16,686–16,691.

    CAS  Google Scholar 

  • Perin M. S., Fried V. A., Mignery G. A., Jahn R., and Sudhof T. C. (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C.Nature 345, 260–263.

    PubMed  CAS  Google Scholar 

  • Piomelli D., Wang J. K., Sihra T. S., Nairn A. C. Czernik A. J., and Greengard P. (1989) Inhibition of Ca2+/calmodulin-dependent protein kinase II by arachidonic acid and its metabolites.Proc. Natl. Acad. Sci. USA 86, 8550–8554.

    PubMed  CAS  Google Scholar 

  • Pisano M. R., Hegazy M. G., Reimann E. M., and Dokas L. A. (1988) Phosphorylation of protein B-50 (GAP-43) from adult rat brain cortex by casein kinase II.Biochem. Biophys. Res. Commun. 155, 1207–1212.

    PubMed  CAS  Google Scholar 

  • Plattner H. (1989) Regulation of membrane fusion during exocytosis.Int. Rev. Cytol. 119, 197–286.

    PubMed  CAS  Google Scholar 

  • Politino M. and King M. M. (1990) Calcineurin-phospholipid interactions. Identification of the phospholipid-binding subunit and analyses of a two-stage binding process.J. Biol. Chem. 265, 7619–7622.

    PubMed  CAS  Google Scholar 

  • Pollard H. B., Creutz C. E., Fowler V., Scott J., and Pazoles C. J. (1982) Calcium-dependent regulation of chromaffin granule movement membrance contact, and fusion during exocytosis.Cold Spring Harb. Symp. Quant. Biol. 46 Pt2, 819–834.

    PubMed  Google Scholar 

  • Pozzan T., Gatti G., Dozio N., Vicentini L. M., and Meldolesi J. (1984) Ca++-dependentand-independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation.J. Cell. Biol. 99, 628–638.

    PubMed  CAS  Google Scholar 

  • Qi D. F., Schatzman R. C., Mazzei G. J., Tumer R. S., Raynor R. L., Liao S., and Kuo J. F. (1983) Polyamines inhibit phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases.Biochem. J. 213, 281–288.

    PubMed  CAS  Google Scholar 

  • Rane S. G., Walsh M. P., McDonald J. R., and Dunlap K. (1989) Specific inhibitors of protein kinase C block transmitter-induced modulation of sensory neuron calcium current.Neuron 3, 239–245.

    PubMed  CAS  Google Scholar 

  • Rhoads D. E., Osburn L. D., Peterson N. A., and Raghupathy E. (1983) Release of neurotransmitter amino acids from synaptosomes: enhancement of calcium-independent efflux by oleic and arachidonic acids.J. Neurochem. 41, 531–557.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. (1987) Regulation of the phosphorylation and dephosphorylation of a 96,000 dalton phosphoprotein (P96) in intact synaptosomes.Adv. Exp. Med. Biol. 221, 155–166.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. (1991) Dephosphin, a 96,000 dalton substrate of protein kinase C in synaptosomal cytosol is phosphorylated in intact synaptosomes.FEBS Lett. 282, 388–392.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Dunkley P. R. (1983a) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: Factors determining the magnitude of the response.J. Neurochem. 41, 909–918.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Dunkley P. R. (1983b) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: the effects of calcium, strontium, and barium.Neurosci. Lett. 43, 85–90.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Dunkley P. R. (1985) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes is modulated by calcium.J. Neurochem. 44, 338–348.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Dunkley P. R. (1987) Altered protein phosphorylation in intact rat cortical synaptosomes after in vivo administration of fluphenazine.Biochem. Pharmacol. 36, 2203–2208.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Lovenberg W. (1986) Calcium channel agonists and antagonists regulate protein phosphorylation in intact synaptosomes.Neurosci. Lett. 68, 1–6.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Lovenberg W. (1988) Phosphorylation of synaptosomal cytoplasmic proteins: Inhibition of calcium-activated, phospholipidependent protein kinase (protein kinase C) by BAY K 8644.Neurochem. Int. 12, 143–153.

    CAS  Google Scholar 

  • Robinson P. J., Jarvie P. A., and Dunkley P. R. (1984) Depolarisation-dependent protein phosphorylation in rat cortical synaptosomes is inhibited by fluphenazine at a step after calcium entry.J. Neurochem. 43, 659–667.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Lovenberg W. (1988) Phosphorylation of synaptosomal cytoplasmic proteins: Inhibition of calcium-activated, phospholipidependent protein kinase (protein kinase C) by BAY K 8644.Neurochem. Int. 12, 143–153.

    CAS  Google Scholar 

  • Robinson P. J., Jarvie P. A., and Dunkley P. R. (1984) Depolarisation-dependent protein phosphorylation in rat cortical synaptosomes is inhibited by fluphenazine at a step after calcium entry.J. Neurochem. 43, 659–667.

    PubMed  CAS  Google Scholar 

  • Robinson P. J., Hauptschein R., Lovenberg W., and Dunkley P. R. (1987) Dephosphorylation of synpptosomal proteins P96 and P139 is regulated by both depolarization and calcium, but not by a rise in cytosolic calcium alone.J. Neurochem. 48, 187–195.

    PubMed  CAS  Google Scholar 

  • Robinson P. J., Cheng H. C., Black C. K., Schmidt C. J., Kariya T., Jones W. D., and Dage R. C. (1990) MDL 27,032 (4-propyl-5-(4-pyridinyl)-2(3o-oxazolone), an active site-directed inhibitor of protein kinase C and cyclic AMP-dependent protein kinase that relaxes vascular smooth muscle.J. Pharmacol. Exp. Ther. 255, 1392–1398.

    PubMed  CAS  Google Scholar 

  • Rodnight R. and Leal R. (1990) Regional variations in protein phosphorylating activity in rat brain studied in micro-slices labeled with32P: phosphate.J. Mol. Neurosci. 2, 115–122.

    PubMed  CAS  Google Scholar 

  • Rodnight R. and Perrett C. (1986) Protein phosphorylation and synaptic transmission: receptor mediated modulation of protein kinase C in a rat brain fraction enriched in synaptosomes.J. Physiol. (Paris) 81, 340–348.

    CAS  Google Scholar 

  • Rodnight R., Perrett C., and Soteriou S. (1986) Twodimensional patterns of neural phosphoproteins from the rat labeled in vivo under anaesthesia, and in vitro in slices and synaptosomes.Prog. Brain. Res. 69, 373–381.

    PubMed  CAS  Google Scholar 

  • Roghani M., Da Silva C., and Castagna M. (1987) Tumor promoter chloroform is a potent protein kinase C activator.Biochem. Biophys. Res. Commun. 142, 738–744.

    PubMed  CAS  Google Scholar 

  • Roldan E. R. and Harrison R. A. (1990) Diacylglycerol and phosphatidate production and the exocytosis of the sperm acrosome.Biochem. Biophys. Res. Commun. 172, 8–15.

    PubMed  CAS  Google Scholar 

  • Ronning S. A. and Martin T. F. J. (1986) Characterization of phorbol ester- and diacylglycerol-stimulated secretion in permeable GH3 pituitary cells. Interaction with Ca2+.J. Biol. Chem. 261, 7840–7845.

    PubMed  CAS  Google Scholar 

  • Routtenberg A. (1985) Phosphoprotein regulation of memory formation: enhancement and control of synaptic plasticity by protein kinase C and protein F1.Ann. NY Acad. Sci. 444, 203–211.

    PubMed  CAS  Google Scholar 

  • Sakai K., Hirai, M., Minoshima S., Kudoh, J., Fukuyama R., and Shimizu N. (1989) Isolation of cDNAs encoding a substrate for protein kinase C: Nucleotide sequence and chromosomal mapping of the gene for a human 80K protein.Genomics 5, 309–315.

    PubMed  CAS  Google Scholar 

  • Sanchez-Prieto J., Sihra T. S., and Nicholls D. G. (1987) Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes.J. Neurochem. 49, 58–64.

    PubMed  CAS  Google Scholar 

  • Satir, B. H., Busch G., Vuoso A., and Murtaugh T. J. (1988) Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium.J. Cell. Biochem. 36, 429–443.

    PubMed  CAS  Google Scholar 

  • Satir B. H., Hamasaki T., Reichman M., and Murtaugh T. J. (1989) Species distribution of a phosphoprotein (parafusin) involved in exocytosis.Proc. Natl. Acad. Sci. USA 86, 930–932.

    PubMed  CAS  Google Scholar 

  • Sato C., Nishizawa K., Nakayama T., and Kobayashi T. (1985) Effect upon mitogenic stimulation of calcium-dependent phosphorylation of cytoskeleton-associated 350,000-and 80,000-mol-wt polypeptides in quiescent 3Y1 cells.J. Cell Biol. 100, 748–753.

    PubMed  CAS  Google Scholar 

  • Schachtele C., Seifert R., and Osswald H. (1988) Stimulus-dependent inhibition of platelet aggregation by the protein kinase C inhibitors polymyxin B, H-7 and staurosporine.Biochem. Biophys. Res. Commun. 151, 542–547.

    PubMed  CAS  Google Scholar 

  • Schrama L. H., Heemskerk F. M. J., and De Graan P. N. E. (1989) Dephosphorylation of protein kinase C phosphorylated B-SO/GAP-43 by the calmodulin-dependent phosphatase calcineurin.Neurosci. Res. Commun. 5, 141–146.

    CAS  Google Scholar 

  • Seifert R. and Schachtele C. (1988) Studies with protein kinase C inhibitors presently available cannot elucidate the role of protein kinase C in the activation of NADOH oxidase.Biochem. Biophys. Res. Commun. 152, 585–592.

    PubMed  CAS  Google Scholar 

  • Seifert R., Schachtele C., Rosenthal W., and Schultz G. (1988) Activation of protein kinase C by cis- and trans-fatty acids and its potentiation by diacylglycerol.Biochem. Biophys. Res. Commun. 154, 20–26.

    PubMed  CAS  Google Scholar 

  • Sekiguchi K., Tsukuda M., Ogita K., Kikkawa U., and Nishizuka Y. (1987) Three distinct forms of rat brain protein kinase C: Differential response to unsaturated fatty acids.Biochem. Biophys. Res. Commun. 145, 797–802.

    PubMed  CAS  Google Scholar 

  • Shearman M. S., Shinomura T., Oda T., and Nishizuka Y. (1991) Protein kinase C subspecies in adult rat hippocampal synaptosomes. Activation by diacylglycerol and arachidonic acid.FEBS Lett. 279, 261–264.

    PubMed  CAS  Google Scholar 

  • Shearman M. S., Naor Z., Sekiguchi K., Kishimoto A. and Nishizuka Y. (1989) Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and it lipoxygenase metabolites.FEBS Lett. 243, 177–182.

    PubMed  CAS  Google Scholar 

  • Sheu F.-S., Marais R. M., Parker P. J., Bazan N. G., and Routtenberg A. (1990) Neuron-specific protein FI/GAP-43 shows substrate specificity for the beta subtype of protein kinase C.Biochem. Biophys. Res. Commun. 171, 1236–1243.

    PubMed  CAS  Google Scholar 

  • Shimizu T. and Wolfe L. S. (1990) Arachidonic acid cascade and signal transduction.J. Neurochem. 55, 1–15.

    PubMed  CAS  Google Scholar 

  • Shinomura T., Asaoka Y., Oka M., Yoshida K. and Nishizuka Y. (1991) Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: Its possible implications.Proc. Natl. Acad. Sci. USA 88, 5149–5153.

    PubMed  CAS  Google Scholar 

  • Shu C. and Selmanoff M. (1988) Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes.Endocrinology 122, 2699–2709.

    PubMed  CAS  Google Scholar 

  • Shuntoh H., Taniyama K., and Tanaka C. (1989) Involvement of protein kinase C in the Ca2+-dependent vesicular release of GABA from central and enteric neurons of the guinea pig.Brain. Res. 483, 384–388.

    PubMed  CAS  Google Scholar 

  • Shuntoh H., Taniyama K., Fukuzaki H., and Tanaka C. (1988) Inhibition by cyclic AMP of phorbol esterpotentiated norepinephrine release from guinea pig brain cortical synaptosomes.J. Neurochem. 51, 1565–1572.

    PubMed  CAS  Google Scholar 

  • Sihra T. S., Wang J. K., Gorelick F. S., and Greengard P. (1989) Translocation of synapsin I in response to depolarization of isolated nerve terminals.Proc. Natl. Acad. Sci. USA 86, 8108–8112.

    PubMed  CAS  Google Scholar 

  • Sim A. T. R. (1992) The regulation and function of protein phosphatases in the brain.Mol. Neurobiol. Vol. 5, this issue.

  • Sim A. T. R., Dunkley P. R., Jarvie P. E., and Rostas J. A. (1991) Modulation of synaptosomal protein phosphorylation/dephosphorylation by calcium is antagonised by inhibition of protein phosphatases with okadaic acid.Neurosci. Lett. 126, 203–206.

    PubMed  CAS  Google Scholar 

  • Skene J. H. P. (1989) Axonal growth-associated proteins.Annu. Rev. Neurosci. 12, 127–156.

    PubMed  CAS  Google Scholar 

  • Skene J. H. P. (1990) GAP-43 as a'calmodulin sponge' and some implications for calcium signaling in axon terminals.Neurosci. Res. 8 Suppl. 13, S112-S125.

    Google Scholar 

  • Skene J. H. P. and Virag I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43.J. Cell Biol. 108, 613–624.

    PubMed  CAS  Google Scholar 

  • Stauderman K. A. and Pruss R. M. (1989) Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells.J. Biol. Chem. 264, 18,349–18,355.

    CAS  Google Scholar 

  • Stevens V. L., Winton E. F., Smith E. E., Owens N. E., Kinkade J. M., Jr., and Merrill A. H., Jr. (1989) Differential effects of long-chain (sphingoid) bases on the monocytic differentiation of human leukemia (HL 60) cells induced by phorbol esters, 1 alpha, 25-dihydroxyvitamin D3, or ganglioside GM3.Cancer Res. 49, 3229–3234.

    PubMed  CAS  Google Scholar 

  • Stratton K. R., Worley P. F., Huganir R. L., and Baraban J. M. (1989) Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices.Proc. Natl. Acad. Sci. USA 86, 2498–2501.

    PubMed  CAS  Google Scholar 

  • Strecher B., Hohne B., Gras U., Momayezi M. Glas-Albrecht R., and Plattner H. (1987) Involvement of a 65 kDa phosphoprotein in the regulation of membrane fusion during exocytosis in Paramecium cells.FEBS Lett. 223, 25–32.

    Google Scholar 

  • Strittmatter S. M., Valenzula D., Kennedy T. E., Neer E., and Fishman M. C. (1990) G0 is a major growth cone protein subject to regulation by GAP-43.Nature 344, 836–841.

    PubMed  CAS  Google Scholar 

  • Strong J. A., Fox A. P., Tsien R. W., and Kaczmarek L. K. (1987) Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons.Nature 325, 714–717.

    PubMed  CAS  Google Scholar 

  • Stumpo D. J., Graff J. M., Albert K. A., Greengard P., and Blackshear P. J. (1989a) Nucleotide sequence of a cDNA for the bovine myristoylated alaninerich C kinase substrate (MARCKS).Nucleic Acids Res. 17, 3987, 3988.

    PubMed  CAS  Google Scholar 

  • Stumpo D. J., Graff J. M., Albert K. A., Greengard P., and Blackshear P. J. (1989b) Molecular cloning, characterization, and expression of a cDNA encoding the “80- to 87-kDa” myristoylated alanine-rich C kinase substrate: A major cellular substrate for protein kinase C.Proc. Natl. Acad. Sci. USA 86, 4012–4016.

    PubMed  CAS  Google Scholar 

  • Tachikawa E., Takahashi S., Kashimoto T., and Kondo Y. (1990) Role of Ca2+/phospholipid-dependent protein kinase in catecholamine secretion from bovine adrenal medullary chromaffin cells.Biochem. Pharmacol. 40, 1505–1513.

    PubMed  CAS  Google Scholar 

  • Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., and Tomita F. (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2+-dependent protein kinase.Biochem. Biophys. Res. Commun. 135, 397–402.

    PubMed  CAS  Google Scholar 

  • Tamaoki T., Takahashi I. Kobayashi E., Nakano H., Akinaga S., and Suzuki K. (1990) Calphostin (UCN1028) and calphostin related compounds, a new class of specific and potent inhibitors of protein kinase C.Adv. Second Messenger Phosphoprotein Res. 24, 497–501.

    PubMed  CAS  Google Scholar 

  • Tanaka C., Fujiwara H., and Fujii Y. (1986) Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium: published erratum appears inFEBS Lett.,201(1), 179;FEBS Lett.195, 129–134.

    PubMed  CAS  Google Scholar 

  • Tanaka C., Taniyama K., and Kusunoki M. (1984) A phorbol ester and A23187 act synergistically to release acetyocholine from guinea pig ileum.FEBS Lett. 175, 165–169.

    PubMed  CAS  Google Scholar 

  • Taniyama K., Saito N., Kose A., Matsuyama S., Nakayama S., and Tanaka C. (1990) Involvement of the gamma subtype of protein kinase C in GABA release from the cerebellum.Adv. Second Messenger Phosphoprotein Res. 24, 399–404.

    PubMed  CAS  Google Scholar 

  • TerBush D. R. and Holz R. W. (1990) Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells. The effects of protein kinase C(19–31), Ca/CaM kinase II (291–317), and staurosporine.J. Biol. Chem. 265, 21,179–21,184.

    CAS  Google Scholar 

  • Thelen M., Rosen A., Nairn A. C., and Aderem A. A. (1990) Tumor necrosis factor α modifies agonistdependent responses in human neutrophils by inducing the synthesis and myristoylation of a specific protein kinase C substrate.Proc. Natl. Acad. Sci. USA 87, 5603–5607.

    PubMed  CAS  Google Scholar 

  • Thureson-Klein A. K. and Klein R. L. (1990) Exocytosis from neruonal large dense-cored vesicles.Int. Rev. Cytol. 121, 67–126.

    PubMed  CAS  Google Scholar 

  • Trimble W. S., Linial M., and Scheller R. H. (1991) Cellular and molecular biology of the presynaptic nerve terminal.Annu. Rev. Neurosci. 14, 93–122.

    PubMed  CAS  Google Scholar 

  • Valtorta F., Fesce R., Grohovaz F., Haimann C., Hurlbut W. P., Iezzi N., Torri Tarelli F., Villa A., and Ceccarelli B. (1990) Neurotransmitter release and synaptic vesicle recycling.Neuroscience 35, 477–489.

    PubMed  CAS  Google Scholar 

  • Van Hooff C. O., De Graan P. N., Oestreicher A. B., and Gispen W. H. (1988) B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes.J. Neurosci. 8, 1789–1795.

    PubMed  Google Scholar 

  • Van Hooff C. O. M., De Graan P. N. E., Oestreicher A. B., and Gispen W. H. (1989) Muscarinic receptor activation stimulates B-50/GAP43 phosphorylation in isolated nerve grow cones.J Neurosci. 9, 3753–3759.

    PubMed  Google Scholar 

  • Vandenbark G. R., Kuhn L. J., and Niedel J. E. (1984) Possible mechanism of phorbol diester-induced maturation of human promyelocyte leukemia cells.J. Clin. Invest. 73, 448–457.

    PubMed  CAS  Google Scholar 

  • Varecka L., Peterajova E., and Pogady J. (1987) Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel.FEBS Lett. 225, 173–177.

    PubMed  CAS  Google Scholar 

  • Versteeg D. H. G. and Ulenkate H. J. L. M. (1987) Basal and electrically stimulated release of [3H]noradrenaline and [3H]dopamine from rat amygdala slices in vitro: effects of 4-beta-phorbol 12, 13-dibutyrate, 4-alpha-phorbol 12,13-didecanoate and polymyxin B.Brain Res. 416, 343–348.

    PubMed  CAS  Google Scholar 

  • Vitkovic L., Steisslinger H. W., Aloyo V. J., and Mersel M. (1988) the 43-kDa neuronal growth-associated protein (GAP-43) is present in plasma membranes of rat astrocytes.Proc. Natl. Acad. Sci. USA 85, 8296–8300.

    PubMed  CAS  Google Scholar 

  • Wakade A. R., Malhotra R. K., and Wakade T. D. (1985) Phorbol ester, an activator of protein kinase C, enhances calcium-dependent release of sympathetic neurotransmitter.Naunyn Schmiedebergs Arch. Pharmacol. 331, 122–124.

    PubMed  CAS  Google Scholar 

  • Wakim B. T. Alexander K. A., Masure H. R., Cimler B. M., Storm D. R., and Walsh K. A. (1987) Amino acid sequence of P-57, a neurospecific calmodulinbinding protein.Biochemistry 26, 7466–7470.

    PubMed  CAS  Google Scholar 

  • Wang H.-Y. and Friedman E. (1987) Protein kinase C: regulation of serotonin release from rat brain cortical slices.Eur. J. Pharmacol. 141, 15–21.

    PubMed  CAS  Google Scholar 

  • Wang J. K., Walaas S. I., and Greengard P. (1988) Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems.J. Neurosci. 8, 281–288.

    PubMed  CAS  Google Scholar 

  • Wang J. K., Walaas S. I., Sihra, T. S., Aderem A. A., and Greengard P. (1989) Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals.Proc. Natl. Acad. Sci. USA 86, 2253–2256.

    PubMed  CAS  Google Scholar 

  • Weiss S. Ellis J., Hendley D. D., and Lenox R. H. (1989) Translocation and activation of protein kinase C in striatal neurons in primary culture: Relationship to phorbol dibutyrate actions on the inositol phosphate generating system and neurotransmitter release.J. Neurochem. 52, 530–536.

    PubMed  CAS  Google Scholar 

  • Wise B. C. and Kuo J. F. (1983) Modes of inhibition by acylcarnitines, adriamycin and trifluoperazine on cardiac phospholipid-sensitive calcium-dependent protein kinase.Biochem. Pharmacol. 32, 1259–1265.

    PubMed  CAS  Google Scholar 

  • Witters, L. A. and Blackshear P. J. (1987) Protein kinase C-mediated phosphorylation in intact cells.Methods Enzymol. 141, 412–424.

    PubMed  CAS  Google Scholar 

  • Wooten M. W. and Wrenn R. W. (1988) Linoleic acid is a potent activator of protein kinase C type III-alpha isoform in pancreatic acinar cells; its role in amylase secretion.Biochem. Biophys. Res. Commun. 153, 67–73.

    PubMed  CAS  Google Scholar 

  • Wrenn R. W., Katoh N., Wise B. C., and Kuo J. F. (1980) Stimulation by phosphatidylserine and calmodulin of calcium-dependent phosphorylation of endogenous proteins from cerebral cortex.J. Biol. Chem. 255, 12,042–12,046.

    CAS  Google Scholar 

  • Wright C. D. and Hoffman M. D. (1986) The protein kinase C inhibitors H-7 and H-9 fail to inhibit human neutrophil activation.Biochem. Biophys. Res. Commun. 135, 749–755.

    PubMed  CAS  Google Scholar 

  • Yamamoto S., Gotoh H., Aizu E., Sasakawa N., Hiai H., and Kato R. (1988) Differential effects of diacylglycerols and 12-O-tetradecanoylphorbol-13-acetate on protein phosphorylation and cell proliferation of tumor promoter-dependent leukemia cell line A65T.Carcinogenesis 9, 1857–1862.

    PubMed  CAS  Google Scholar 

  • Yanagihara N., Toyohira Y., Koda Y., Wada A., and Izumi F. (1991) Inhibitory effect of okadaic acid on carbachol-evoked secretion of catecholamines in cultured bovine adrenal medullary cells.Biochem. Biophys. Res. Commun. 174, 77–83.

    PubMed  CAS  Google Scholar 

  • Yip R. K. and Kelly P. T. (1989)In situ protein phosphorylation in hippocampal tissue slices.J. Neurosci. 9, 3618–3630.

    PubMed  CAS  Google Scholar 

  • Zhang L. and Kmjezic K. (1987) Effects of intracellular injections of phorbol ester and protein kinase C on cat spinal motoneurons in vivo.Neurosci. Lett. 77, 287–292.

    PubMed  CAS  Google Scholar 

  • Zigmond R. E., Schwarzschild M. A., and Rittenhouse A. R. (1989) Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation.Annu. Rev. Neurosci. 12, 415–461.

    PubMed  CAS  Google Scholar 

  • Zimmermann H. (1990) Neurotransmitter release.FEBS Lett. 268, 394–399.

    PubMed  CAS  Google Scholar 

  • Zuber M. X., Strittmatter S. M., and Fishman M. C. (1989) A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43.Nature 341, 345.

    PubMed  CAS  Google Scholar 

  • Zurgil N. and Zisapel N. (1985) Phorbol esters and calcium act synergistically to enhance neurotransmitter release by brain neurons in culture.FEBS Lett. 185, 257–261.

    PubMed  CAS  Google Scholar 

  • Zurgil N., Yarom M., and Zisapel N. (1986) Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by phorbol ester in cultured brain neurons.Neuroscience 19, 1255–1261.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

While this manuscript was under review, another comprehensive review of the role of PKC in neurotransmitter release was published by Gispen's group (Dekker et al., 1991a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.J. The role of protein kinase C and its neuronal substrates dephosphin, B-50, and MARCKS in neurotransmitter release. Mol Neurobiol 5, 87–130 (1991). https://doi.org/10.1007/BF02935541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935541

Index Entries

Navigation