Skip to main content
Log in

Simultaneous production of sphingolipids and ethanol byKluyveromyces thermotolerans

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Kluyveromyces thermotolerans strain NBRC 1674 was selected for the simultaneous production of sphingolipids and ethanol from beet molasses. The strain gradually synthesized ethanol with fermentation periods and attained a level slightly higher than that of the strain ofSaccharomyces cerevisiae usually used for ethanol production. The sphingolipids accumulated in the cells were composed of almost equal amounts of free ceramides and glucosylceramides. The sphingoid bases and fatty acids of the two sphingolipids differed from each other and changed under aerobic and anaerobic growth conditions. Oxygen limitation may cause accumulation of sphinganine by inhibiting sphingolipid desaturases and enhance its proportion in both the sphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida K., Kinoshita M., Sugawara T., Ono J., Miyazawa T., Ohnishi M.: Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells.J.Oleo Sci. 53, 503–510 (2004).

    CAS  Google Scholar 

  • Aida K., Kinoshita M., Tanji M., Sugawara T., Tamura M., Ono J., Ueno N., Ohnishi M.: Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydrazine-treated mice.J.Oleo Sci. 54, 45–49 (2005).

    CAS  Google Scholar 

  • Barreto-Bergter E., Pinto M.R., Rodrigues M.L.: Structure and biological functions of fungal cerebrosides.Ann.Acad.Brasil.Cienc. 76, 67–84 (2004).

    CAS  Google Scholar 

  • Belloch C., Querol A., Garcia M.D., Barrio E.: Phylogeny of the genusKluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene.Internat.J.Syst.Evol.Microbiol. 50, 405–416 (2000).

    CAS  Google Scholar 

  • Dickson R.C., Lester R.L.: Sphingolipid functions inSaccharomyces cerevistae.Biochim.Biophys.Acta 1583, 13–25 (2002).

    PubMed  CAS  Google Scholar 

  • Hino A., Takano H., Tanaka Y.: New freeze-tolerant yeast for frozen dough preparations.Cereal Chem. 64, 269–275 (1987).

    Google Scholar 

  • Holm Hansen E., Nissen P., Sommer P., Nielsen J.C., Arneborg N.: The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice withSaccharomyces cerevisiae.J.Appl.Microbiol. 91, 541–547 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Loden M.: Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders.Am.J.Clin.Dermatol. 4, 771–788 (2003).

    Article  PubMed  Google Scholar 

  • Malpertury A., Llorente B., Blandin G., Artiguenave F., Wincker P., Dujon B.: Genomic exploration of the hemiascomycetous yeasts — 10.Kluyveromyces thermotolerans.FEBS Lett. 487, 61–65 (2000).

    Article  Google Scholar 

  • van Meer G., Wolthoorn J., Degroote S.: The fate and function of glycosphingolipid glucosylceramide.Philos.Trans.Roy.Soc.London B Biol.Sci. 358, 869–873 (2003).

    Article  CAS  Google Scholar 

  • Mills D.A., Johannsen E.A., Cocolin L.: Yeast diversity and persistence in botrytis-affected wine fermentations.Appl.Environ.Microbiol. 68, 4884–4893 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi M., Ito S., Fujino Y.: Characterization of sphingolipids in spinach leaves.Biochem.Biophys.Acta 752, 416–422 (1983).

    CAS  Google Scholar 

  • Ohnishi M., Kawase S., Kondo Y., Fujino Y., Ito S.: Identification of major cerebroside species in seven edible mushrooms.J.Japan.Oil Chem.Soc. 45, 51–56 (1996).

    CAS  Google Scholar 

  • Rupčić J., Marić V.: Isolation and chemical composition of the ceramide of theCandida lipolytica yeast.Chem.Phys.Lipids 91, 153–161 (1998).

    Article  PubMed  Google Scholar 

  • Rupčić J., Marič V.: Cerebrosides ofCandida lipolytica yeast.Appl.Microbiol.Biotechnol. 64, 416–420 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rupčić J., Mesarić M., Marić V.: The influence of carbon source on the level and composition of ceramides of theCandida lipolytica yeast.Appl.Microbiol.Biotechnol. 50, 583–588 (1998).

    Article  PubMed  Google Scholar 

  • Šajbidor J., Grego J.: Fatty acid alterations inSaccharomyces cerevisiae exposed to ethanol stress.FEMS Microbiol.Lett. 93, 13–16 (1992).

    Article  Google Scholar 

  • Sommer P., Stolpe E., Kramp B., Heinemeyer J.: Dried starter cultures of non-Saccharomyces yeasts for alcoholic fermentation: the impact ofKluyveromyces thermotolerans orTorulaspora delbrueckii in combinations withSaccharomyces cerevisiae on the aroma and flavor development in wine, pp. 83 inAbstr. ASEV 54th Annual Meeting, Reno (USA) 2003.

  • Sperling P., Zahringer U., Heinz E.: A sphingolipid desaturase from higher plants. Identification of a new cytochromeb 5 fusion protein.J.Biol.Chem. 273, 28590–28596 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, T., Miyazawa T.: Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection.Lipids 34, 1231–1237 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa N., Kinoshita M., Oda Y., Ohnishi M.: Existence of cerebroside inSaccharomyces kluyveri and its related species.FEMS Yeast Res. 2, 533–538 (2002a).

    PubMed  CAS  Google Scholar 

  • Takakuwa N., Kinoshita M., Oda Y., Ohnishi M.: Isolation and characterization of the genes encoding Δ8-sphingolipid desaturase fromSaccharomyces kluyveri andKluyveromyces lactis.Curr.Microbiol. 45, 459–461 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Tanji M., Namimatsu K., Kinoshita M., Motoshima H., Oda Y., Ohnishi M.: Content and chemical compositions of cerebrosides in lactose-assimilating yeasts.Biosci.Biotechnol.Biochem. 68, 2205–2208 (2004a).

    Article  PubMed  CAS  Google Scholar 

  • Tanji M., Kinoshita M., Yada H., Yamane M., Kakuta Y., Motoshima H., Oda Y., Ohnishi M.: Effects of growth temperature on cerebroside content and chemical composition inKluyveromyces lactis.J.Oleo Sci. 53, 127–133 (2004b).

    CAS  Google Scholar 

  • Ternes P., Franke S., Zahringer U., Sperling P., Heinz E.: Identification and characterization of a sphingolipid Δ4-desaturase family.J.Biol.Chem. 277, 25512–25518 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Warnecke D., Heinz E.: Recently discovered functions of glucosylceramides in plants and fungi.Cell.Mol.Life Sci. 60, 919–941 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Oda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, M., Kimura, K., Yunoki, K. et al. Simultaneous production of sphingolipids and ethanol byKluyveromyces thermotolerans . Folia Microbiol 51, 191–195 (2006). https://doi.org/10.1007/BF02932121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932121

Keywords

Navigation