Skip to main content
Log in

Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpca

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Foliar spray and micro-injection of plant growth-promoting rhizobacterial species,viz. Pseudomonas fluorescens andP. aeruginosa on chickpea induced synthesis of phenylalanine ammonia-lyase (PAL) when tested againstSclerotinia sclerotiorum. Induction of PAL was also associated with increased synthesis of phenolic compounds such as tannic, gallic, caffeic, chlorogenic and cinnamic acids. Treatment withP. fluorescens was found to be more effective in inducing phenolic compounds as compared toP. aeruginosa. However, persistence of PAL activity was observed more withP. aeruginosa. Although both the inoculation methods were effective, foliar application was found to be superior to micro-injection in terms of rapid PAL activity leading to the synthesis of phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

IAA:

3-indolylacetic acid

ISR:

induced systemic resistance

KB:

King’s B (agar)

Pf4 :

Pseudomonas fluorescens

Pag :

Pseudomonas aeruginosa

PAL:

phenylalanine ammonia-lyase (EC 4.3.1.5)

PDA:

potato-dextrose agar

PGPR:

plant growth-promoting rhizobacteria

Sst :

Sclerotinia sclerotiorum

References

  • Bakker A.W., Schippers B.: Microbial cyanide production in the rhizosphere in relation to potato yield reduction andPseudomonas sp. mediated plant growth stimulation.Soil Biol.Biochem.19, 451–457 (1987).

    Article  CAS  Google Scholar 

  • Barry T.N., Manley T.R.: Interrelationships between concentrations of total condensed tannins, free condensed tannin and lignin inLotus sp. and their possible consequences in ruminant nutrition.J.Sci.Food Agric.37, 248–254 (1986).

    Article  CAS  Google Scholar 

  • Coley P.D.: Herbivory and defense characteristics of tree species in a low land tropical forest.Ecol.Monogr.53, 209–233 (1983).

    Article  Google Scholar 

  • Da Cunha A.: The estimation of phenylalanine ammonia lyase shows phenylpropanoid biosynthesis to be regulated byl-phenylalanine supply and availability.Phytochemistry26, 2723–2727 (1987).

    Article  Google Scholar 

  • Feenly P.: Plant apparency and chemical defense.Recent Adv.Phytochem10, 1–40 (1976).

    Google Scholar 

  • Grey C.B., Cowan D.P., Langton S.D., Watkins R.W.: Systemic application ofl-phenylalanine increase plant resistance to vertebrate herbivory.J.Chem.Ecol.23, 1463–1470 (1997).

    Article  CAS  Google Scholar 

  • Hagerman A.E., Buttler L.G.: Chossing appropriate methods and standards for assaying tannin.J.Chem.Ecol.15, 1795–1810 (1989).

    Article  CAS  Google Scholar 

  • Hagerman A.E., Klucher K.M.: Tannin-protein interactions, pp. 67–76 in V. Cody, E. Middleton, J.B. Harborne (Eds):Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure Activity Relationships. Alan R. Liss, New York 1986

    Google Scholar 

  • Hagerman A.E., Robbins C.T.: Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms.J.Chem.Ecol.13, 1243–1259 (1987).

    Article  CAS  Google Scholar 

  • Hahlbrock K., Scheel D.: Physiology and molecular biology of phenylpropanoid metabolism.Ann.Rev.Plant Physiol.Plant Mol.Biol.40, 347–369 (1989).

    Article  CAS  Google Scholar 

  • Havir E.A.:l-Phenylalanine ammonia lyase from soybeen cell suspension cultures.Meth.Enzymol.142, 248–253 (1987).

    Article  CAS  Google Scholar 

  • Hennin C., Diederichsen E., Hofte M.: Resistance to fungal pathogens triggered by the cf9-Avr9 response in tomato and oilseed rape in the absence of hypersenitive cell death.Mol.Plant Pathol.3, 31–41 (2002).

    Article  CAS  Google Scholar 

  • Jones D.H.: Phenylalanine ammonia lyase regulation of its induction and its role in plant development.Phytochemistry23, 1349–1359 (1984).

    Article  CAS  Google Scholar 

  • Mc Manus J.P., Davis K.G., Lilley T.H., Haslam E.: The association of proteins with polyphenols.J.Chem.Soc.Chem.Commun.7, 309–311 (1981).

    Article  Google Scholar 

  • Millar R.L., Higgins H.J.: Association of cyanide with infection birdsfoot trefoil byStemphyllium loti.Phytopathology60, 104–110 (1970).

    Article  CAS  Google Scholar 

  • Nicholson R.L., Hammerschmidt R.: Phenolic compounds and their role in disease resistance.Ann.Rev.Phytopathol.30, 369–389 (1992).

    Article  CAS  Google Scholar 

  • Pikovskaya R.E.: Mobilization of phosphorus in soil in connection with vital activity of some microbial species.Mikrobiologiya17, 362–370 (1948).

    CAS  Google Scholar 

  • Purdy L.H.:Sclerotinia sclerotiorum: history, disease symptomatology, host range, geographic distribution and impact.Phytopathology69, 875–880 (1979).

    Article  Google Scholar 

  • Ramamoorthy V., Viswanathan R., Raghuchander T., Prakasam V., Samiyappan R.: Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases.Crop Prot.20, 1–11 (2001).

    Article  CAS  Google Scholar 

  • Sarma B.K., Singh U.P.: Ferulic acid may prevent infection ofCicer arietinum bySclerotium rolfsii.World J.Microbiol.Biotechnol.19, 123–127 (2003).

    Article  CAS  Google Scholar 

  • Sarma B.K., Singh U.P., Singh K.P.: Variability in Indian isolates ofSclerotium rolfsii.Mycologia94, 1051–1058 (2002).

    Article  Google Scholar 

  • Schwyn B., Neilands J.B.: Universal chemical assay for the detection and determination of siderophore.Anal.Riochem.160, 17–56 (1987).

    Article  Google Scholar 

  • Singh U.P., Sarma B.K., Singh D.P., Amar Bahadur: Plant growth promoting rhizobacteria-mediated induction of phenolies in pea (Pisum sativum) following infection withErysiphe pisi.Curr.Microbiol.44, 396–400 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Singh U.P., Sarma B.K., Singh D.P.: Effect of plant growth-promoting rhizobacteria and culture filtrate ofSclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum).Curr.Microbiol.46, 131–140 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Stoessi, A.: Secondary plant metabolites in preinfectional and postinfectional resistance, pp. 71–122 in J.A. Bailey, B.J. Daverall (Eds):The Dynamics of Host Defense. Academic Press, New York 1983.

    Google Scholar 

  • van Loon L.C., Bakker P., Pieterse C.M.J.: Systemic resistance induced by rhizosphere bacteria.Ann.Rev.Phytopathol.36, 453–483 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basha, S.A., Sarma, B.K., Singh, D.P. et al. Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpca. Folia Microbiol 51, 463–468 (2006). https://doi.org/10.1007/BF02931592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931592

Keywords

Navigation