Skip to main content
Log in

Physiology and microbial community structure in soil at extreme water content

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A sandy loam soil was brought to 6 water contents (13–100 % WHC) to study the effects of extreme soil moistures on the physiological status of microbiota (represented by biomass characteristics, specific respiration, bacterial growth, and phospholipid fatty acid, PLFA, stress indicators) and microbial community structure (assessed using PLFA fingerprints). In dry soils, microbial biomass and activity declined as a consequence of water and/or nutrient deficiency (indicated by PLFA stress indicators). These microbial communities were dominated by G+ bacteria and actinomycetes. Oxygen deficits in water-saturated soils did not eliminate microbial activity but the enormous accumulation of poly-3-hydroxybutyrate by bacteria showed the unbalanced growth in excess carbon conditions. High soil water content favored G bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cmic :

microbial biomass carbon

MUFA:

monoenoic PLFA

PHB:

poly-3-hydroxybutyrate

pre:

monoenoic precursor of cyc-PLFA

3H-dT:

3H-thymidine

cyc:

cyclopropane-PLFA

Nmic :

microbial biomass nitrogen

PLFA:

phospholipid fatty acid(s)

SFA:

saturated PLFA

WHC:

water-holding capacity

References

  • Amato M., Ladd J.N.: Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils.Soil Biol.Biochem. 20, 107–114 (1988).

    Article  CAS  Google Scholar 

  • Atlas R.M.: Use of microbial diversity measurements to assess environmental stress, pp. 540–545 in M.J. Klug, C.A. Reddy (Eds):Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington (DC) 1984.

    Google Scholar 

  • Bååth E.: Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization centrifugation.Soil Biol.Biochem. 24, 1157–1165 (1992).

    Article  Google Scholar 

  • Bossio D.A., Scow K.M.: Impact of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization pattern.Microb.Ecol. 35, 265–278 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Brown A.D.:Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester (UK) 1990.

    Google Scholar 

  • Chen Y.S., Chen S.C., Kao C.M., Chen Y.L.: Effects of soil pH, temperature and water content on the growth ofBurkholderia pseudomallei.Folia Microbiol. 48, 253–256 (2003).

    Article  CAS  Google Scholar 

  • Chotte J.L., Ladd J.N., Amato M.: Measurement of biomass C, N and14C of a soil at different water content using a fumigation extraction assay.Soil Biol.Biochem. 30, 1221–1224 (1998).

    Article  CAS  Google Scholar 

  • Daniel M., Choi J.H., Kim J.H., Lebeault J.M.: Effect of nutrient deficiency on accumulation and relative molecular-weight of poly-β-hydroxybutyric acid by methylotrophic bacterium,Pseudomonas 135.Appl.Microbiol.Biotechnol. 37, 702–706 (1992).

    CAS  Google Scholar 

  • Dawes E.A., Senior P.J.: The role and regulation of energy reserve polymers in microorganisms.Adv.Microb.Physiol. 10, 135–266 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Eliiottová D., Tříska J., Petersen S.O., Šantrůčková H.: Analysis of poly-β-hydroxybutyrate in environmental samples by GC-MS/MS.Fresenius J.Anal.Chem. 367, 157–164 (2000).

    Article  Google Scholar 

  • Federle T.W.: Microbial distribution in soil — new techniques, pp. 493–498 in F. Megusar, M. Gantar (Eds):Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana 1986.

    Google Scholar 

  • Frostegård Å., Tunlid A., Bååth E.: Phospholipid fatty acids composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Appl.Environ.Microbiol. 59, 3605–3617 (1993).

    PubMed  Google Scholar 

  • Grant R.F., Rochette P.: Soil microbial respiration at different water potentials and temperatures: theory and mathematical mdoeling.Soil Sci.Soc.Am.J. 58, 1681–1690 (1994).

    CAS  Google Scholar 

  • Griffin D.M.: Water and microbial stress.Adv.Microb.Ecol. 5, 91–136 (1981).

    CAS  Google Scholar 

  • Grundmann G.L., Renault P., Rosso L., Bardin R.: Differential effects of soil water content and temperature on nitrification and aeration.Soil Sci.Soc.Am.J. 59, 1342–1349 (1995).

    CAS  Google Scholar 

  • Guckert J.B., Hood M.A., White D.C.: Phospholipid ester-linked fatty acid profile changes during nutrient deprivation ofVibrio cholerae: increases intrans/cis ratio and proportions of cyclopropyl fatty acid.Appl.Environ.Microbiol. 52, 794–801 (1986).

    PubMed  CAS  Google Scholar 

  • Guckert J.B., Ringelberg D.B., White D.C., Hanson R.S., Bratina B.J.: Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria.J.Gen.Microbiol. 137, 2631–2641 (1991).

    PubMed  CAS  Google Scholar 

  • Harris R.F.: Effects of water potential on microbial growth and activity, pp. 23–96 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.

    Google Scholar 

  • Howard D.M., Howard P.J.A.: Relationships between CO2 evolution, moisture content and temperature for a range of soil types.Soil Biol.Biochem. 25, 1537–1546 (1993).

    Article  Google Scholar 

  • James B.W., Mauchline W.S., Dennis P.J., Keevil C.W., Wait R.: Poly-3-hydroxybutyrate inLegionella pneumophila, an energy source for survival in low-nutrient environments.Appl.Environ.Microbiol. 62, 822–827 (1999).

    Google Scholar 

  • Jianping Su, Yanqing Wu, Xiaojun Ma, Gaosen Zhang, Huyuan Feng, Yinghua Zhang: Soil microbial counts and identification of culturable bacteria in an extreme by arid zone.Folia Microbiol. 49, 423–430 (2004).

    Article  Google Scholar 

  • Kieft T.L., Riegelberg D.B., White D.C.: Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in porous medium.Appl.Environ.Microbiol. 60, 3292–3299 (1994).

    PubMed  CAS  Google Scholar 

  • Kim Y.B., Lenz R.W.: Polyesters from microorganisms, pp. 51–79 in T. Scheper (Ed.):Advances in Biochemical Engineering/Biotechnology, Vol. 71. Springer-Verlag, Berlin-Heidelberg 2001.

    Google Scholar 

  • Kroppenstedt R.M.: Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173–199 in M. Goodfellow, D.E. Minnikin (Eds):Chemical Methods in Bacterial Systematics. Academic Press, London 1985.

    Google Scholar 

  • Lindahl V., Frostegård M., Bakken L., Bååth E.: Phospholipid fatty acid composition of size fractionated indigenous soil bacteria.Soil Biol.Biochem. 29, 1565–1569 (1997).

    Article  CAS  Google Scholar 

  • Linn D.M., Doran J.W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils.Soil Sci.Soc.Am.J. 48, 1267–1272 (1984).

    CAS  Google Scholar 

  • Loferer-Krössbacher M., Klima J., Psenner R.: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis.Appl.Environ.Microbiol. 64, 688–694 (1998).

    PubMed  Google Scholar 

  • Lundquist E.J., Scow K.M., Jackson L.E., Uesugi S.L., Johnson C.R.: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle.Soil Biol.Biochem. 31, 1661–1675 (1999).

    Article  CAS  Google Scholar 

  • Martens D.A., Frankenberger W.T.: Saccharide composition of extracellular polymers produced by soil microorganisms.Soil Biol.Biochem. 23, 731–736 (1991).

    Article  CAS  Google Scholar 

  • Mazumder R., Pinkard H.C., Alban P.S., Phelps T.J., Benoit R.E.: Low-substrate regulated microaerophilic behavior as a stress response of aquatic and soil bacteria.Curr.Microbiol. 41, 79–83 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Navarrete A., Peacock A., Macnaughton S.J., Urmeneta J., Mas-Castalla J., White D.C., Guerrero R.: Physiological status and community composition of microbial mats of the Ebro delta, Spain, by signature lipid biomarkers.Microb.Ecol. 39, 92–99 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Nazih N., Finlay-Moore O., Hartel P.G., Furhmann J.J.: Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential.Soil Biol.Biochem. 33, 693–696 (2001).

    Article  CAS  Google Scholar 

  • Nichols P.D., White D.C.: Accumulation of poly-β-hydroxybutyrate in a methane-enriched, halogenated hydrocarbon-degrading soil column: implications for microbial community structure and nutritional status.Hydrobiologia 176/177, 369–377 (1989).

    Article  Google Scholar 

  • Okabe A., Oike H., Toyota K., Kimura M.: Comparison of phospholipid fatty acid composition in floodwater and plow layer soil during the rice cultivation period in a Japanese paddy field.Soil Sci.Plant Nutr. 46, 893–904 (2000).

    CAS  Google Scholar 

  • Papendick R.I., Campbell G.S.: Theory and measurement of water potential, pp. 1–22 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.

    Google Scholar 

  • Potts M.: Desiccation tolerance of prokaryotes.Microbiol.Rev. 58, 755–805 (1994).

    PubMed  CAS  Google Scholar 

  • Ratledge C., Wilkinson S.G.:Microbial Lipids. Academic Press, London 1988.

    Google Scholar 

  • Robertson E.B., Firestone M.K.: Relationship between desiccation and exopolysacharide production in a soilPseudomonas sp.Appl.Environ.Microbiol. 58, 1284–1291 (1992).

    Google Scholar 

  • Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom J.E., Braddock J.F.: Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga.Soil Biol.Biochem. 31, 831–838 (1999).

    Article  CAS  Google Scholar 

  • Skopp J., Jawson M.D., Doran J.W.: Steady-state aerobic microbial activity as a function of soil water content.Soil Sci.Soc.Am.J. 54, 1619–1625 (1990).

    Google Scholar 

  • Sundh I., Nielsson M., Borgå P.: Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles.Appl.Environ.Microbiol. 63, 1476–1482 (1997).

    PubMed  CAS  Google Scholar 

  • Tempest D.W., Neijssel O.M.: Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments.Adv.Microb.Ecol. 2, 105–153 (1978).

    Google Scholar 

  • Third K.A., Newland M., Cord-Ruwisch R.: The effect of dissolved oxygen on PHB accumulation in activated sludge cultures.Biotechnol.Bioeng. 82, 238–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Thomas T.D., Batt R.D.: Degradation of cell constituents by starvedStreptoccoccus lactis in relation to survival.J.Gen.Microbiol. 58, 347–362 (1969).

    PubMed  CAS  Google Scholar 

  • Uhlířová E., Šantrůčková H.: Growth rate of bacteria is affected by soil texture and extraction procedure.Soil Biol.Biochem. 35, 217–224 (2003).

    Article  Google Scholar 

  • Van Gestel M., Merckx R., Vlassak K.: Microbial biomass responses to soil drying and rewetting. I. The fate of fast- and slow-growing microorganisms in soils from different climates.Soil Biol.Biochem. 25, 109–123 (1993).

    Article  Google Scholar 

  • Vance E.D., Brookes P.C., Jenkinson D.S.: An extraction method for measuring soil microbial biomass.Soil Biol.Biochem. 19, 703–707 (1987).

    Article  CAS  Google Scholar 

  • White D.C., Ringelberg D.B.: Utility of the signature lipid biomarker analysis in determining thein situ viable biomass, community structure and nutritional/physiological status of deep subsurface microbiota, pp. 119–136 in P.S. Army, D.L. Haldeman (Eds):The Microbiology of the Terrestrial Deep Subsurface. Lewis Publishers, Boca Raton (USA) 1997.

    Google Scholar 

  • Zelles L.: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review.Biol.Fertil.Soils 29, 111–129 (1999).

    Article  CAS  Google Scholar 

  • Zelles L., Bay Q.Y., Ma R.X., Rackwitz R., Winter K., Beese F.: Microbial biomass, metabolic activity and nutritional status determined from fatty-acid patterns and poly-β-hydroxybutyrate in agriculturally-managed soils.Soil Biol.Biochem. 26, 439–446 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Uhlířová.

Additional information

This work was supported by theGrant Agency of the Czech Republic (206/99/1410 and 526/99/P033), theResearch Plan of the Institute of Soil Biology AS CR (Z 606 6911), and by theMinistry of Education, Youth and Sport of the Czech Republic (123 100 004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlířová, E., Elhottová, D., Tříska, J. et al. Physiology and microbial community structure in soil at extreme water content. Folia Microbiol 50, 161–166 (2005). https://doi.org/10.1007/BF02931466

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931466

Keywords

Navigation