Skip to main content
Log in

Application of selectively acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

4-Nitrophenyl α-d-galactopyranosyl-(1→3)-6-O-acetyl-α-d-galactopyranoside was prepared in a transglycosylation reaction catalyzed by α-d-galactosidase fromTalaromyces flavus using 4-nitrophenyl α-d-galactopyranoside as a glycosyl donor and 4-nitrophenyl 6-O-acetyl-α-d-galactopyranoside as an acceptor. 4-Nitrophenyl 6-O-acetyl-α-d-galactopyranoside and 4-nitrophenyl 6-O-acetyl-β-d-galactopyranoside were prepared in a regioselective enzymic transesterification in pyridine-acetone catalyzed by the lipase PS fromBurkholderia cepacia. A series of water-miscible organic solvents (acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, 2-methoxyethanol, pyridine, 2-methylpropan-2-ol, tetrahydrofuran, propargyl alcohol) were used as co-solvents in this enzymic reaction. Their influence on the activity and stability of the α-galactosidase fromT. flavus was established. 2-Methylpropan-2-ol and acetone (increasing the solubility of the modified substrate acceptors and displaying the minimum impairment of the activity and stability of the enzyme) were used as co-solvents in transglycosylation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brena B. M., Irazoqui G., Giacomini C., Batista-Viera F.: Effect of increasing co-solvent concentration on the stability of soluble and immobilized β-galactosidase.J.Mol.Catal.B: Enzym. 21, 25–29 (2003).

    Article  Google Scholar 

  • Carrea G., Riva S.: Properties and synthetic application of enzymes in organic solvents.Angew.Chem.Internat.Ed. 39, 2226–2254 (2000).

    Article  Google Scholar 

  • Danieli B., Luisetti M., Sampognaro G., Carrea G., Riva S.: Regioselective acylation of polyhydroxylated natural compounds catalyzed byCandida antarctica lipase B (Novozym 435) in organic solvents.J.Mol.Catal.B: Enzym. 3, 193–201 (1997).

    Article  Google Scholar 

  • Druckhammer D., Hennen W.J., Pederson R.L., Barbas C.F., Gautheron C.M., Krach T., Wong C.: Enzyme catalysis in synthetic carbohydrate chemistry.Synthesis 7, 499–525 (1991).

    Article  Google Scholar 

  • Grabowska U., MacManus D.A., Biggadike K., Bird M.I., Davies S., Gallagher T., Hall L.D., Vulfson E.N.: Diastereoselective resolution of 6-substituted glycosidesvia enzymatic hydrolysis.Carbohydr.Res. 305, 351–361 (1998).

    Article  Google Scholar 

  • Hušaková L., Riva S., Casali M., Nicotra S., Kuzma M., Huňková Z., Křen V.: Enzymatic glycosylation using 6-O-acylated sugar donors and acceptors: β-N-acetylhexosaminidase catalysed synthesis of 6-O,N,N′-triacetyl-chitobiose and 6′-O,N,N′-triacetylchitobiose.Carbohydr.Res. 331, 143–148 (2001).

    Article  PubMed  Google Scholar 

  • Křen V., Thiem J.: Glycosylation employing bio-systems: from enzymes to whole cells.Chem.Soc.Rev. 26, 463–473 (1997).

    Article  Google Scholar 

  • Lay L., Panza L., Riva S., Khitri M., Tirendi S.: Regioselective acylation of disaccharides by enzymatic transesterification.Carbohydr.Res. 291, 197–204 (1996).

    Article  Google Scholar 

  • van Rantwijk F., Woudenberg-van Oosterom M., Sheldon R.A.: Glycosidase catalyzed synthesis of alkyl glycosides.J.Mol.Catal.B: Enzym. 6, 511–532 (1999).

    Article  Google Scholar 

  • Riva S., Roda G.: Sugar transformations using enzymes in non-aqueous media, pp. 146–159 in M.N. Gupta (Ed.):Methods in Non-Aqueous Enzymology. Birkhäuser-Verlag, Basle 2000.

    Google Scholar 

  • Therisod M., Klibanov A.M.: Facile enzymatic preparation of monoacylated sugars in pyridine.J.Am.Chem.Soc. 108, 5638–5640 (1986).

    Article  CAS  Google Scholar 

  • Thiem J.: Applications of enzymes in synthetic carbohydrate chemistry.FEMS Microbiol.Rev. 16, 193–211 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Weignerová L., Rajnochová-Herkommerová E., Křen V.: The reverse enzymic glycosylation. (In Czech)Chem.Listy 93, 781–787 (1999a).

    Google Scholar 

  • Weignerová L., Sedmera P., Huňková Z., Halada P., Křen V., Casali M., Riva S.: Enzymatic synthesis ofiso-globotriose from partially protected lactose.Tetrahedron Lett. 40, 9297–9299 (1999b).

    Article  Google Scholar 

  • Weignerová L., Huňková Z., Kuzma M., Křen V.: Enzymatic synthesis of threepNP-α-galabioses: application of the library of fungal α-galactosidases.J.Mol.Catal.B: Enzym. 11, 219–224 (2001).

    Article  Google Scholar 

  • Withers S.G.: Mechanisms of glycosyl transferases and hydrolases.Carbohydr.Polym. 44, 325–337 (2001).

    Article  Google Scholar 

  • Wong C., Whitesides G.M.:Enzymes in Synthetic Organic Chemistry, Tetrahedron Org.Chem.Ser., p. 12. Elsevier, London 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Křen.

Additional information

This work was supported byCzech National Science Foundation grants no. 203/01/1018 and 204/02/P096.Institutional Research Concept AV OZ 502 0903, COST D25/0001/02 and by bilateral projectConsiglio Nazionale delle Ricerche-Acad. Sci. Czech Rep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simerská, P., Kuzma, M., Pišvejcová, A. et al. Application of selectively acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides. Folia Microbiol 48, 329–337 (2003). https://doi.org/10.1007/BF02931362

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931362

Keywords

Navigation