Skip to main content
Log in

The effect of fluidic conditions on the continuous-flow bioluminescent detection of ATP in a microfluidic device

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effect of fluidic conditions on the bioluminescent detection of ATP in a microfluidic device was surveyed using homemade detector system. The bioluminescent reaction of ATP was directly affected by the retention time and flow rates of the solutions in this diffusion-based mixing and reaction system due to the laminar flow in the microchannel. ATP and enzyme solutions were separately injected into the microfluidic device at different flow rates through 3 inlet ports. The ATP solution was injected through the middle port, while the enzyme solution was injected in the two remaining ports. When the ratio of ATP to enzyme solution was fixed, the optimum flow rates of enzyme, ATP, and enzyme solution was 3.5, 8.0, and 3.5 μL/min, respectively. The optimal total flow rate was 15 μL/min. The detection limit for the concentration of ATP at optimal conditions was less than 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane).Anal. Chem. 70: 4974–4984.

    Article  CAS  Google Scholar 

  2. Stachowiak, T. B., T. Rohr, E. F. Hilder, D. S. Peterson, M. Yi, F. Svec, and J. M. J. Frechet (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices.Electrophoresis 24: 3689–3693.

    Article  CAS  Google Scholar 

  3. Li, C., Y. Yang, H. G. Craighead, and K. H. Lee (2005) Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method.Electrophoresis 26: 1800–1806.

    Article  CAS  Google Scholar 

  4. Sohn, Y.-S., J. Kai, and C. H. Ahn (2004) Protein array patterning on cyclic olefin copolymer (COC) for disposable protein chip.Sensor Lett. 2: 171–174.

    Article  CAS  Google Scholar 

  5. Weigl, B. H., R. L. Bardell, and C. R. Cabrera, (2003) Lab-on-a-chip for drug development.Adv. Drug Deliv. Rev. 55: 349–377.

    Article  CAS  Google Scholar 

  6. Brolin, S. E. and G. Wettermark (1992)Bioluminescence Analysis. VCH, New York, NY, USA.

    Google Scholar 

  7. Ahn, J.-M., B. C. Kim, and M. B. Gu (2006) Characterization ofgltA::luxCDABE fusion inEscherichia coli as a toxicity biosensor.Biotechnol. Bioprocess Eng. 11: 516–521.

    Article  CAS  Google Scholar 

  8. Min, J. (2007) 17β-Estradiol-stimulated eNOS gene transcriptional activation is regulated through the estrogen-responsive element in eNOS promoter.Biotechnol. Bioprocess Eng. 12: 446–449.

    Article  CAS  Google Scholar 

  9. Girotti, S., E. N. Ferri, S. Ghini, F. Fini, M. Musiani, G. Carrea, A. Roda, and P. Rauch (1997) Luminescent techniques applied to bioanalysis.Chem. Listy 91: 477–482.

    CAS  Google Scholar 

  10. Liu, B.-F., M. Ozaki, H. Hisamoto, Q. Luo, Y. Utsumi, T. Hattori, and S. Terabe (2005) Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection.Anal. Chem. 77: 573–578.

    Article  CAS  Google Scholar 

  11. Kim, Y.-B., J.-H. Park, W.-J. Chang, Y.-M. Koo, E.-K. Kim, and J.-H. Kim (2006) Statistical optimization of the lysis agents for gram-negative bacterial cells in a microfluidic device.Biotechnol. Bioprocess Eng. 11: 288–292.

    Article  CAS  Google Scholar 

  12. Tsukagoshi, K., M. Tahira, and R. Nakajima (2005) Capillary electrophoresis apparatus equipped with a bioluminescence detector using a batch-or flow-type detection cell.J. Chromatogr. A 1094: 192–195.

    Article  CAS  Google Scholar 

  13. Kirner, T., P. Jaschinsky, and J. M. Kohler (2004) Spatially resolved detection of miniaturized reaction-diffusion experiments in chip reactors for educational purposes.Chem. Eng. J. 101: 163–169.

    Article  CAS  Google Scholar 

  14. Baroud, C. N., F. Okkels, L. Menetrier, and P. Tabeling (2003) Reaction-diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor.Phys. Rev. E 67: 060104-1–060104-4.

    Article  CAS  Google Scholar 

  15. Effenhauser, C. S., G. J. M. Bruin, A. Paulus, and M. Ehrat (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips.Anal. Chem. 69: 3451–3457.

    Article  CAS  Google Scholar 

  16. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber (2001) Soft lithography in biology and biochemistry.Annu. Rev. Biomed. Eng. 3: 335–373.

    Article  CAS  Google Scholar 

  17. Bishop, R. H. (2001)LabVIEW Student Edition 6i. Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  18. Salama, K., H. Eltoukhy, A. Hassibi, and A. E. Gamal (2004) Modeling and simulation of luminescence detection platforms.Biosens. Bioelectron. 19: 1377–1386.

    Article  CAS  Google Scholar 

  19. Gomi, K., and N. Kajiyama (2001) Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin.J. Biol. Chem. 276: 36508–36513.

    Article  CAS  Google Scholar 

  20. De Wet, J. R., K. V. Wood, D. R. Helinski, and M. DeLuca (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase inEscherichia coli.Proc. Natl. Acad. Sci. USA 82: 7870–7873.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Ki Kim or Jinhwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, TH., Chang, WJ., Kim, YB. et al. The effect of fluidic conditions on the continuous-flow bioluminescent detection of ATP in a microfluidic device. Biotechnol. Bioprocess Eng. 12, 470–474 (2007). https://doi.org/10.1007/BF02931342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931342

Keywords

Navigation