Skip to main content
Log in

Hemicellulose bioconversion to polyanionic heteropolysaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anionic polysaccharides, traditionally obtained from plant or algal sources, have a variety of commercial uses. Such gums from microorganisms have received increased recent interest. We have initiated a program to investigate the bioconversion of pentosans to rheologically useful anionic extracellular polysaccharides (AEPS). A number of earlier-described species, includingCryptococcus laurentii, Klebsiella pneumoniae, Arthrobacter viscosus, andPseudomonas ATCC 31260, appear to have potential in this regard. These organisms can individually convert either xylose, enzymatic oligomeric hemicellulose digests, dilute mineral acid hemicellulose (“TVA”) hydrolysates, or a five-monosaccharide mixture simulating sulfite process liquors to AEPS. The formation parameters, compositions, mol-wt distributions, and the intrinsic viscosities of these purified AEPS are exemplified. Substitution of pentose as the major substrate for glucose can result in changes in mol-wt distribution or in the percentage of noncarbohydrate substituents in some AEPS. Pursuit of these observations may lead to interesting structure-property relationships and toward rheological applications for pentosan-derived AEPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipinsky, E. S. (1981),Science 212, 1465–1471.

    Article  CAS  Google Scholar 

  2. Detroy, R. W. and St. Julian, G. (1983),CRC Crit. Rev. Microbiol. 10, 203–228.

    Article  CAS  Google Scholar 

  3. Giampetro, M. and Pimentel, D. (1990),CRC Rev. in Plant Sci. 9, 213–233.

    Google Scholar 

  4. Magee, R. J. and Kosaric, N. (1986),Adv. Biochem. Eng. 26, 62–91.

    Google Scholar 

  5. Schneider, H. (1989),CRC Crit. Rev. Biotechnol. 9, 1–40; Wu, J. F., Lastick, S. M., and Updegraff, D. M. (1986),Nature 321, 887-888.

    Article  CAS  Google Scholar 

  6. Buchert, J., Puls, J., and Poutanen, K. (1988),Appl. Microbiol. Biotechnol. 28, 367–372.

    Article  CAS  Google Scholar 

  7. Lamptey, J., Moo-Young, M., and Robinson, C. W. (1987),Biotechnology and Renewable Energy, Moo-Young, M., ed., Elsevier, NY, pp. 46–56.

    Google Scholar 

  8. Wayman, M. and Yu, S. (1987),Biotechnol. Letts. 7, 255–260.

    Article  Google Scholar 

  9. Lambert, R. O., Moore-Bulls, M. R., and Barrier, J. W. (1990),Appl. Biochem. Biotech. 24/25, 773–783.

    Google Scholar 

  10. Liu, H. S., Wu, H. W., and Saylor, G. S. (1988),Biotechnol. Progress 4, 40–46.

    CAS  Google Scholar 

  11. Paszner, L. and Cho, H. J. (1989),Tappi Journal 72, 135–142; Aziz, S. and Sarkanen, K. (1989),idem., 169-175.

    CAS  Google Scholar 

  12. Lee, Y. H., Robinson, C. W., and Moo-Young, M. (1987),Biotech. Bioeng. 29, 572–581.

    Article  CAS  Google Scholar 

  13. Yalpani, M., ed. (1987),Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications, Elsevier, NY.

    Google Scholar 

  14. Baird, J. K., Sandford, P. A., and Cottrell, I. W. (1983),Biotechnology 1, 778–783; Sutherland, I. W. (1986),Microbiol. Sciences 3, 5–9.

    Article  CAS  Google Scholar 

  15. Sandford, P. A., Cottrell, I. W., and Pettit, D. J. (1984),Pure & Appl. Chem. 56, 879–892.

    Article  CAS  Google Scholar 

  16. Okutani, K. (1984),Bull. Jap. Soc. Sci. Fisheries 50, 1407–1412; Perry, M. B. and Webb, A. C. (1981),Can. J. Biochem. 60, 124-130.

    Google Scholar 

  17. Kang, K. S., Veeder, G. T., and Cottrell, I. W. (1983),Prog. Ind. Microbiol. 18, 231–253.

    CAS  Google Scholar 

  18. Williams, A. G. and Wimpenny, J. W. T. (1977),J. Gen. Microbiol. 102, 13–21.

    CAS  Google Scholar 

  19. Sloneker, J. H., Orentas, D. G., Knutsen, C. A., Watson, P. R., and Jeanes, A. (1968),Can. J. Chem. 46, 3353–3360.

    Article  CAS  Google Scholar 

  20. Joseleau, J. P. and Marais, M. F. (1979),Carbohydr. Res. 77, 183–190.

    Article  CAS  Google Scholar 

  21. Haggstrom, L. and Forsberg, C. (1986),Appl. Microbiol. Biotech. 23, 234–239.

    Google Scholar 

  22. Kennedy, J. F. and Bradshaw, I. J. (1986),Carbohydr. Res. 156, 79–85.

    Article  CAS  Google Scholar 

  23. Kennedy, A. F. D. and Sutherland, I. A. (1987),Biotech. Appl. Biochem. 9, 12–19.

    CAS  Google Scholar 

  24. Deschatelets, L. and Yu, E. K. E. (1986),Appl. Microbiol. Biotechnol. 24, 379–385.

    Article  CAS  Google Scholar 

  25. Blumenkrantz, N. and Asboe-Hansen, G. (1973),Anal. Biochem. 54, 484–489.

    Article  CAS  Google Scholar 

  26. Galambos, J. T. and McCain, J.m R. (1967),Anal. Biochem. 19, 119–132.

    Article  CAS  Google Scholar 

  27. McComb, E. A. and McReady, R. M. (1957),Anal. Chem. 29, 819–821.

    Article  CAS  Google Scholar 

  28. Linton, J. B., Evans, M., Jones, D. S. and Gouldney, D. N. (1987),J. Gen. Microbiol. 133, 2961–2969.

    CAS  Google Scholar 

  29. Courtois, B., Courtois, J., Heyrand, A., and Rinaudo, M. (1986),J. Gen. Appl. Microbiol. 32, 519–526.

    Article  CAS  Google Scholar 

  30. Petersen, G. R., Nelson, G. A., Cathey, C. A., and Fuller, G. G. (1989),Appl. Biochem. Biotech. 20/21, 845–867.

    Google Scholar 

  31. Royer, J. C. and Nakas, J. P. (1989),Enzyme Microb. Technol. 11, 405–409.

    Article  CAS  Google Scholar 

  32. Perego, P., Converti, A., Palazzi, E., DelBorghi, M., and Ferraiolo, G. (1990),J. Ind. Microbiol. 6, 157–164.

    Article  CAS  Google Scholar 

  33. Wayman, C. and Yu, I. (1985),Biotech. Lett. 7, 255–261.

    Article  CAS  Google Scholar 

  34. Zajic, J. E., Ho, K. K., and Kosaric, N. (1979),Dev. Ind. Microbiol. 20, 631–639.

    Google Scholar 

  35. Williams, A. G., Lawson, C. J., and Wimpenny, J. W. T. (1981), U.S. Patent #4,298,275.

    Google Scholar 

  36. Osman, S. F. and Felt, W. F. (1989),J. Bacteriol. 171, 1760–1762.

    CAS  Google Scholar 

  37. Patel, G. B., MacKenzie, C. R., and Agnew, B. J. (1986),Arch. Microbiol. 146, 68–73.

    Article  CAS  Google Scholar 

  38. Henderson, P. J. F. and Maiden, M. C. J. (1987),Carbon Substrates in Biotechnology, Stowall, J. D., Beardsmore, A. J., Keevil, C. W., and Woodward, J. R., eds., IRL Press, Oxford, pp. 67–91.

    Google Scholar 

  39. Jarman, T. R. and Pace, G. W. (1984),Arch. Microbiol. 137, 231–235; Linton, J. D. (1990),FEMS Microbiol. Rev. 75, 1-18.

    Article  CAS  Google Scholar 

  40. Shibaev, V. N. (1986),Adv. Carbohydr. Chem. 44, 277–339.

    Article  CAS  Google Scholar 

  41. White, C. N., Cherniak, R., and Jacobsen, E. S. (1990),J. Med. Vet. Mycol. 28, 289–301.

    Article  CAS  Google Scholar 

  42. Bryan, B. A., Lindardt, R. J., and Daniels, L. (1986),Appl. Environ. Microbiol. 51, 1304–1308.

    CAS  Google Scholar 

  43. Hassler, R. A. and Doherty, D. H. (1990),Biotechnol. Prog. 6, 182–187.

    Article  CAS  Google Scholar 

  44. Cesaro, A., Esposito, P., Bertocehi, C., and Crescenzi, Y. (1989),Carbohydr. Res. 186, 141–155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanenbaum, S.W., Fisher, P.J., Hemwood, A. et al. Hemicellulose bioconversion to polyanionic heteropolysaccharides. Appl Biochem Biotechnol 34, 135–148 (1992). https://doi.org/10.1007/BF02920541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920541

Index Entries

Navigation