Skip to main content
Log in

Note on study of the sporulation of fungi: endotrophic sporulation in the genusPenicillium

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Conidiophore formation and sporulation can be induced inPenicillium sp. strain P 17 by an environmental factor—carbohydrate (carbon) starvation. Both surface and submerged mycelium, when transferred from synthetic medium to glucose-free salt solution, form conidiophores and sporulate, while in the control cultures on complete medium, vegetative growth continues. The time required for the formation of conidiophores, i.e. the induction interval, is 7–14 h and its length increases with the age of both surface and submerged mycelia. During the induction phase the mycelium undergoes autolysis, associated with degradation of energy motabolism involving the comsumption of reserve substances, a rapid drop in endogenous respiration and the endogenous reducing activity of the mycelium, a decrease in the labile phosphate concentration, proteolysis, an increase in the ammonia and orthopsphate concentration and exhaustion of readily oxidized amino acids from the pool. A transient increase in respiration occurs before differentiation of the conidiophores starts. During the second half of the induction phase, polyphenol substances and polyphenol oxidase appear in the mycelium.The enzyme is not induced by exogenous phenols. Its possible role in the sporulation of fungi is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnow, E. L.:Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mictures. J. biol. Chem. 118: 531, 1937.

    CAS  Google Scholar 

  • Behal, J. F., Eakin, R. E.:Inhibition of mold development by purine and pyrimidine analogs. Arch. Biophys. 82: 439, 1959.

    Article  CAS  Google Scholar 

  • Bent, K. J., Morton, A. G.:Amino acid composition of fungi during development in submerged culture. Biochem. J. 92: 260, 1964.

    PubMed  CAS  Google Scholar 

  • Bradley, S. G., Sussman, M., Ennis, H. L.:Environ mental factors affecting the aggregation of the cellular slime mold. Dictyostelium discoideum. J. Protozool. 3: 33, 1956.

    CAS  Google Scholar 

  • Cantino, E. C.:The relationship between biochemical and morphological differentiation in non-filamentous aquatic fungi. In:Microbial reaction to environment. 11th Symp. Soc. Gen. Microbiol, ed. G. G. Meynell, H. Gooder, Cambridge Univ. Press, Cambridge, p. 243, 1961.

    Google Scholar 

  • Chattaway, F. W., Toothill, C., Barlow, A. E. J.:The amino acid metabolism of Microsporum canis. J. gen. Microbiol. 28: 721, 1962.

    PubMed  CAS  Google Scholar 

  • Drywood, R.:Estimation of sugars with anthrone reagent. Ind. Eng. Chem. Anal. Ed. 18: 499, 1946.

    Article  Google Scholar 

  • Foester, J. W., Perry, J. J.:Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J. Bacteriol 67: 295, 1954.

    Google Scholar 

  • Giri, K. V., Nigam, V. N.:Separation of simple saccharides and oligosaccharides by circular paper chromatography. Naturwissenschaften 40: 343, 1953.

    Article  CAS  Google Scholar 

  • Gottlieb, D., van Etten, J. L.:Biochemical changes during the growth of fungi. I. Nitrogen compounds and carbohydrate changes in Penicillium atrovenetum. J. Bacteriol 88: 114, 1964.

    PubMed  CAS  Google Scholar 

  • Gottlicb, D., van Etten, J. L.:Changes in fungi with age. J. Bacteriol 91: 161, 1966.

    Google Scholar 

  • Hatano, S., Takeuchi, I.:ATP content in myxomycete plasmodium and its levels in relation to some external conditions. Protoplasma 52: 169, 1960.

    Article  CAS  Google Scholar 

  • Horwitt, B. N.:Determination of inorganic phosphorus by means of stannous chloride. J. biol. Chem. 199: 537, 1952.

    PubMed  CAS  Google Scholar 

  • Johnson, G., Schaal, L. A.:Relation of chlorogenic acid to scab resistance in potatoes. Science 115: 627, 1952.

    Article  PubMed  CAS  Google Scholar 

  • Kalinin, F. L.: Embryonic development of plants. (In Russian.) Izd. Ukr. Akad. Selsk. Nauk. Kiev 1959.

  • Kirby-Berry, H., Cain, L.:Paper chromatographic technique for determination of amino acids in the presence of interfering substances. Arch. Biochem. 24: 179, 1949.

    Google Scholar 

  • Knight, S. C.:The l-amino acid oxidase of molds. J. Bacteriol 55: 401, 1948.

    PubMed  CAS  Google Scholar 

  • Kretovič, V. J.:The biosynthesis of dicarboxylic amino acids and enzymic transformations of amides in plants. Adv. Enzymol. 20: 319, 1958.

    Google Scholar 

  • Krichevsky, M., Wright, B. E.:Environmental control of the course of development in Dictyostelium discoideum. J. gen. Microbiol. 32: 195, 1963.

    PubMed  CAS  Google Scholar 

  • Krishnan, D. S., Damle, S. P., Bajaj, V.:Studies on the role of metaphosphate in molds. II. Formation of soluble and insoluble metaphosphates in Aspergillus niger. Arch. Biochem. Biophys. 67: 35, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Levy, M.:Titrimetric methods for amino acids. In:Methods in Enzymology, ed. S. P. Colowick, N. O. Kaplan, Acad. Press, New York vol. III, p. 455, 1955.

    Google Scholar 

  • Lyr, H., Luthard, W.:Induction of tyrosinase in higher fungi. Nature 207: 753, 1965.

    Article  CAS  Google Scholar 

  • Pillai, N. C., Srinivasan, K. S.:The amino acid metabolism of Aspergillus flavus. J. gen. Microbiol. 14: 248, 1956.

    PubMed  CAS  Google Scholar 

  • Schaeffer, P., Millet, J., Aubert, J. P.:Catabolic repression of bacterial sporulation. Proc. nat. Acad. Sci. U.S. 54: 704, 1965.

    Article  CAS  Google Scholar 

  • Schulz, G.:Der Einfluss einiger Schwermetallsalze (Zn, Cd, Mn, Fe) auf die chemische Zusammensetzung von Aspergillus niger. Planta 27: 196, 1938.

    Article  Google Scholar 

  • Smithies, W. R.:Chemical composition of a sample of mycelium of Penicillium griseofulvum Dierckx. Biochem. J. 51: 259, 1952.

    PubMed  CAS  Google Scholar 

  • Sussman, M.:Developmental phenomena in microorganisms and in higher forms of life. Anual Rev. Microbiol. 19: 59, 1965.

    Article  CAS  Google Scholar 

  • Wang, C. H., Stern, J., Gilmour, C. M., Klungsoyr, S., Reed, D. J., Bialy, J. J., Christensen, B. E., Cheldelin, V. H.: J. Bacter. 76: 207, 1958 (cit. V. H. Cheldelin,Metabolic Pathways in Microorganisms, J. Wiley and Sons, New York and London, 1961).

    CAS  Google Scholar 

  • Yanagita, T., Kogané, F.:Growth and cytochemical differentiation of mold colonies. J. gen. appl. Microbiol. (Tokyo) 8: 201, 1962.

    Article  Google Scholar 

  • Yanagita, T., Kogané, F.:Cytochemical and physiological differentiation of mold pellets. J. gen. appl. Microbiol. 9: 179, 1963a.

    Article  Google Scholar 

  • Yanagita, T., Kogané, F.:Cellular differentiation of growing mold colonies, with special reference to phosphorus metabolism. J. gen. appl. Microbiol. 9: 313, 1963b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jičínská, E. Note on study of the sporulation of fungi: endotrophic sporulation in the genusPenicillium . Folia Microbiol 13, 401–409 (1968). https://doi.org/10.1007/BF02869190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869190

Keywords

Navigation