Skip to main content
Log in

Secondary sex characters in plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

Sexually dimorphic seed plants have partial or complete separation of ovule and pollen functions into two separate sexes, here uniformly called male and female. Secondary sex characters (differences between the sexes in structures other than the androecia and gynoecia) of such populations are reviewed.

In a number of perennial species, males exceed females in vigor, growth rate or vegetative reproduction. In several monocarpic or short-lived polycarpic species, including hemp, spinach and species ofSilene, females are larger than males. In asparagus, males exceed females in total growth, but individual shoots of females are larger. In some long-lived species, the greater survival rate of males than of females contributes to a predominance of males, but in species ofSilene andRumex acetosa males have a higher mortality rate than females. Males and females sometimes have different microdistributions, and inMercurialis perennis andRumex acetosella this appears to be associated with different environmental optima of the sexes. Differences between males and females in habit, leaf characters and minor morphological features are described. In a considerable range of species, male inflorescences emerge or bolt earlier and males begin flowering sooner than females. Several authors have suggested that females spend proportionately more of their resources on sexual reproduction (have a higher reproductive effort) than do males. The only available data, those forRumex acetosella, support this. There are more reports of males flowering earlier in life and more frequently, having more numerous inflorescences and more flowers per inflorescence, than of females exceeding males in these features. Differences between individual male and female flowers are reviewed.

Secondary sex characters may be incidental consequences of the developmental or genetic basis of sex determination and not adaptive themselves, or they may be selected as optimal strategies for the sexes, or both kinds of explanation may simultaneously be applied. We propose that many of the observed differences between the sexes are of direct selective value in relation to the distinct roles of males and females in sexual reproduction. In particular, the benefits to males of increasing pollen production and to females of increasing ovule production differ in such a way that the optimal reproductive effort will often be less for males than for females; this appears to explain a number of secondary sex characters.

Résumé

Chez les spermatophytes sexuellement dimorphes, les fonctions de l’ovule et du pollen sont plus ou moins complétement séparées en deux sexes distincts, uniformément appelés ici mâle et femelle. Les caractères sexuels secondaires de populations de ce type (différences entre les sexes autres que celles relatives à l’androcée et au gynécée) sont passés en revue.

Chez beaucoup d’espèces perennes, les mâles sont supérieurs aux femelles en vigueur et en vitesse de croissance ou de reproduction végétative. Chez plusieurs espèces monocarpiques comme chez plusieurs espèces annuelles polycarpiques, comme le chanvre, l’épinard ou certaines espèces deSilene, les femelles sont plus grandes que les mâles. Chez l’asperge, les mâles sont supérieurs aux femelles en biomasse totale mais les rameaux des femelles pris individuellement sont plus volumineux. Chez certaines espèces perennes, la longévité des mâles est supérieure à celle des femelles, de sorte que les mâles prédominent; cependant, chez les espèces deSilene et chezRumex acetosa, le taux de mortalité des mâles est plus élevé que celui des femelles.

Les mâles et les femelles ont parfois des micro-distributions différentes, ce qui correspond, chezMercurialis perennis et chezRumex acetosella, à des conditions de milieu optimum différentes suivant les sexes. Sont décrites des différences entre mâles et femelles en port, en caractéristiques foliaires et en détails morphologiques divers. Pour une gamme très étendue d’espèces, l’apparition de l’inflorescence et la floraison ont lieu plus tôt chez les mâles que chez les femelles. Divers auteurs pensent que les femelles dépensent, en proportion, davantage de leurs ressources pour la reproduction sexuée (elles consentent un plus grand effort reproductif) que ne le font les mâles. Les seules données disponibles, qui concernentRumex acetosella, confirment ce point de vue. La littérature fournit davantage de cas où les mâles fleurissent plus souvent, ont des inflorescences plus nombreuses et davantage de fleurs par inflorescence que les femelles que de cas où l’inverse se produit.

Des différences entre les fleurs des individus mâles et femelles ont été décrites concernant des caractères tels que la dimension des pétales, la production de nectar et les structures qui interviennent dans la reproduction des graines.

Il se peut qu’un caractère sexuel secondaire soit la conséquence fortuite du mécanisme génétique ou ontogénique de la détermination du sexe et ne soit pas adaptatif par lui-même; il se peut aussi qu’il résulte de la sélection pour une stratégie optimum pour les sexes; il se peut enfin que les deux types d’explications s’appliquent à la fois. Nous avons tendance à penser que beaucoup des différences observées entre les sexes ont une valeur sélective directement rattachée aux rôles différents des mâles et des femelles dans la reproduction sexuée. En particulier, les bénéfices qui résultent de l’augmentation de la production de pollen par le mâle et de l’augmentation de la production d’ovules par les femelles diffèrent de telle façon que l’effort reproductif optimum est souvent moindre pour les mâles que pour les femelles. Ceci parait pouvoir expliquer l’existence de nombreux caractères sexuels secondaires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allen, C. E. 1945. The genetics of bryophytes II. Bot. Rev.11: 260–287.

    Google Scholar 

  • Baker, H. G. 1947. Biological Flora of the British Isles.Melandrium (Roehling em.) Fries,M. album (Mill.) Garcke andM. dioicum (L. emend.) Coss. & Germ. J. Ecol.35: 271–292.

    Google Scholar 

  • —. 1948. Corolla-size in gynodioecious and gynomonoecious species of flowering plants. Proc. Leeds Philos. Soc.5: 136–139.

    Google Scholar 

  • Bawa, K. S., andP. A. Opler. 1975. Dioecism in tropical forest trees. Evolution29: 167–179.

    Article  Google Scholar 

  • ——. 1977. Spatial relationships between staminate and pistillate plants of dioecious tropical forest trees. Evolution31: 64–68.

    Article  Google Scholar 

  • Blakeslee, A. F. 1906. Differentiation of sex in thallus, gametophyte and sporophyte. Bot. Gaz.42: 161–178.

    Article  Google Scholar 

  • Bouwkamp, J. C., andI. E. McCully. 1972. Competition and survival in female plants ofAsparagus officinalis L. Proc. Amer. Soc. Hort. Sci.97: 74–76.

    Google Scholar 

  • Campbell, B. 1972, ed. Sexual selection and the descent of man 1871–1971. Aldine, Chicago. 378 pp.

    Google Scholar 

  • Clark, R. B., andE. R. Orton. 1967. Sex ratio onIlex opaca Ait. Hort. Sci.2: 115.

    Google Scholar 

  • Connor, H. E. 1965. Breeding systems in New Zealand grasses. VI. Control of gynodioecism inCortaderia richardii (Endl.) Zotov. New Zealand J. Bot.3: 233–242.

    Google Scholar 

  • —. 1974. Breeding systems inCortaderia (Gramineae). Evolution27: 663–678.

    Article  Google Scholar 

  • Cook, O. F. 1914. Sexual inequality in hemp. J. Heredity5: 203–206.

    Google Scholar 

  • Correns, C. 1922. Geschlechtsbestimmung und Zahlenverhältnis der Geschlechter beim Sauerampfer (Rumex Acetosa). Biol. Zentrabl.42: 465–480.

    Google Scholar 

  • —. 1927. Der Unterschied in der Keimungsgeschwindigkeit der Männchensamen und Weibschensamen beiMelandrium. Hereditas9: 33–44.

    Article  Google Scholar 

  • -Correns, C. 1928. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen.In: Handbuch der Vererbungswissenschaft, ed. by E. Baur and M. Hartmann. Vol. 2, pp. 1–128.

  • Coulter, J. M., C. R. Barnes andH. C. Cowles. 1911. A textbook of botany. American Book Co., New York. 2 Vols. 964 pp.

    Google Scholar 

  • Darlington, C. D. 1937. Recent advances in cytology. London. 2nd ed., 671 pp.

  • —. 1939. Evolution of genetic systems. Oliver and Boyd, Edinburgh. 265 pp.

    Google Scholar 

  • Darwin, C. 1877. The different forms of flowers on plants of the same species. Murray, London. 352 pp.

    Google Scholar 

  • Davey, A. J. C., andC. M. Gibson. 1917. Note on the distribution of sexes inMyrica gale. New Phytol.16: 147–151.

    Article  Google Scholar 

  • Dommée, B. 1973. Recherches sur la génétique écologique deThymus vulgaris L. D. Sc. Nat. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier. 129 pp.

    Google Scholar 

  • —. 1976. La stérilité mâle chezThymus vulgaris L.: répartition écologique dans la région méditerranéenne française. Compt. Rend. Hebd. Seances Acad. Sci.282, Serie D: 65–68.

    Google Scholar 

  • Dronamraju, K. R. 1965. The function of the Y chromosome in man, animals and plants. Advances Genet.13: 227–310.

    CAS  Google Scholar 

  • Duckett, J. G. 1972. Sexual behaviour of the genusEquisetum subgenus Hippochaete. J. Linn. Soc. Bot.65: 87–108.

    Google Scholar 

  • Einspahr, D. W. 1960. Sex ratio in quaking aspen and possible sex-related characteristics. 5th World For. Congr. Proc.2: 747–750.

    Google Scholar 

  • Ellis, I. R., andJ. Janick. 1960. The chromosomes ofSpinacia oleracea. Amer. J. Bot.47: 210–214.

    Article  Google Scholar 

  • Evans, G. C. 1972. The quantitative analysis of plant growth. Blackwell, Oxford. 734 pp.

    Google Scholar 

  • Faegri, K., andL. van der Pijl. 1971. The principles of pollination ecology. Pergamon, Oxford. 2nd ed. 291 pp.

    Google Scholar 

  • Farmer, R. E. 1964. Sex ratio and sex-related characteristics in Eastern Cottonwood. Silvae Genet.13: 116–118.

    Google Scholar 

  • Forsberg, G. E. 1888. Ueber die Geschlechterverteilung beiJuniperus commuais. Bot. Zentralbl.33, 91–92.

    Google Scholar 

  • Franken, A. A. 1970. Sex characteristics and inheritance of sex in asparagus (Asparagus officinalis L.). Euphytica19: 277–287.

    Article  Google Scholar 

  • Ghiselin, M. T. 1974. The economy of nature and the evolution of sex. University of California, Berkeley. 346 pp.

    Google Scholar 

  • Gilbert, L. E. 1975. Ecological consequences of a coevolved mutualism between butterflies and plants.In: Coevolution of animals and plants, ed. by L. E. Gilbert and P. H. Raven. University of Texas, Austin.

    Google Scholar 

  • Gillot, P. 1924. Remarques sur le déterminisme du sexe chezMercurialis annua L. Compt. Rend. Hebd. Séances Acad. Sci.179: 1995–1998.

    Google Scholar 

  • Goebel, K. 1905. Organography of plants. Clarendon Press, Oxford. Vol. 2, 707 pp.

    Google Scholar 

  • — 1910. Über sexuellen Dimorphismus bei Pflanzen. Biol. Centralbl.30: 657–679.

    Google Scholar 

  • Godley, E. J. 1964. Breeding systems in New Zealand plants. 3. Sex ratios in some natural populations. New Zealand J. Bot.2: 205–212.

    Google Scholar 

  • — 1976. Sex ratio inClematis gentianoides DC. New Zealand J. Bot.14: 299–306.

    Google Scholar 

  • Green, W. I. 1890. Asparagus. Ohio Agric. Exp. Sta. Bull. 9, 2nd Ser.,3: 241–244.

    Google Scholar 

  • Grier, N. M. 1917. Sexual dimorphism and variation inGingko biloba. Torreya17: 225.

    Google Scholar 

  • Grundwag, M. 1975. Seed set in somePistacia L. (Anacardiaceae) species after interand intraspecific pollination. Isr. J. Bot.24: 205–211.

    Google Scholar 

  • Hackenberg, H. 1909. Über die Substanzquotienten vonCannabis sativa undCannabis gigantea. Beih. Bot. Zentralbl.24: 45–67.

    Google Scholar 

  • Harper, J. L., andJ. Ogden. 1970. The reproductive strategy of higher plants. I. The concept of strategy with special reference toSenecio vulgaris L. J. Ecol.58: 681–698.

    Article  Google Scholar 

  • Harris, W. 1968. Experimental effects on the sex ratio ofRumex acetosella L. Proc. New Zealand Ecol. Soc.15: 51–54.

    Google Scholar 

  • Heinrich, B., andP. H. Raven. 1972. Energetics and pollination ecology. Science176: 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. 1957. The experimental modification of sex expression in flowering plants. Biol. Rev. Cambridge Philos. Soc.32: 38–90.

    Article  CAS  Google Scholar 

  • —. 1964. Sex expression in flowering plants. Brookhaven Symp. Biol.16: 109–122.

    Google Scholar 

  • —. 1972. Sexuality of angiosperms.In: Plant physiology, a treatise. Academic Press, New York. Vol. 6c, pp. 133–289.

    Google Scholar 

  • —, andY. Heslop-Harrison. 1958. Studies on flowering-plant growth and organogenesis. III. Leaf shape changes associated with flowering and sex differentiation onCannabis sativa. Proc. Roy. Irish Acad.59, Sect. B: 257–283.

    Google Scholar 

  • ——. 1969.Cannabis sativa L.In: The induction of flowering, ed. L. T. Evans. Macmillan, Melbourne, pp. 205–226.

    Google Scholar 

  • Imazu, T., andN. Fujishita. 1961. Morphological, ecological and cytological studies on cultivated and wild butterburs,Petasites japonicus Maxim. II. On the morphology of flower, sex ratio and secondary sex characters. Japan Soc. Hort. Sci. J.30: 291–298.

    Article  Google Scholar 

  • Kerner von Marilaun, A. 1895. The natural history of plants. Gresham, London. Vol. 2, 983 pp.

    Google Scholar 

  • Kirby, R. H. 1963. Vegetable fibres. Botany, cultivation and utilization. Interscience, New York 463 pp.

    Google Scholar 

  • Knuth, P. 1906. Handbook of flower pollination. Clarendon, Oxford. Vol., 1, 382 pp.

    Google Scholar 

  • Köhler, D. 1964. Veränderung des Geschlechts vonCannabis sativa durch Gibberellinsäure. Ber. Deutchen Bot. Gesell.77: 275–278.

    Google Scholar 

  • Lawrence, C. W. 1963. Genetic studies on wild populations ofMelandrium. II. Flowering time and plant weight. Heredity18: 149–163.

    Google Scholar 

  • Lewis, K. R. 1961. The genetics of bryophytes. Trans. Brit. Bryol. Soc.4: 111–130.

    Google Scholar 

  • Lewis, K. R., andK. Benson-Evans. 1960. The chromosomes ofCrypothallus mirabilis. Phyton (Buenos Aires)14: 21–35.

    Google Scholar 

  • Lloyd, D. G. 1972. Breeding systems inCotula L. (Compositae, Anthemideae). I. The array of monoclinous and diclinous systems. New Phytol.71: 1181–1194.

    Article  Google Scholar 

  • —. 1973. Sex ratios in sexually dimorphic Umbelliferae. Heredity31: 239–249.

    Google Scholar 

  • —. 1974. Female-predominant sex ratios in angiosperms. Heredity32: 35–44.

    Google Scholar 

  • —. 1975. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica45: 325–339.

    Article  Google Scholar 

  • —. 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor. Pop. Biol.9: 299–316.

    Article  CAS  Google Scholar 

  • —, andA. J. Myall. 1976. Sexual dimorphism inCirsium arvense (L.) Scop. Ann. Bot. (London)40: 115–123.

    Google Scholar 

  • Loehwing, W. F. 1938. Physiological aspects of sex in angiosperms. Bot. Rev.4: 581–625.

    CAS  Google Scholar 

  • Löve, D. 1944. Cytogenetic studies on dioeciousMelandrium. Bot. Not. (1944): 125–213.

  • McPhee, H. C. 1924. The influence of environment on sex in hemp,Cannabis sativa L. J. Agric. Res.28: 1067–1080.

    Google Scholar 

  • Malhotra, R. C. 1930. The sex ratio inAsparagus officinalis L. and its artificial modification. J. Genet.23: 157–172.

    Article  Google Scholar 

  • Masters, M. T. 1878. Note on the dimorphism of Restiaceae. J. Bot.7: 36–37.

    Google Scholar 

  • Mohl, H. von. 1863. Einege Beobachtungen über dimorphe Blüten. Bot. Zeitung Berlin21: 309.

    Google Scholar 

  • Muhle Larsen, C. 1954. Du rapport entre le sexe et le developpement chez les arbres dioiques. 8th Int. Congr. Bot. Sect.13: 25–26.

    Google Scholar 

  • —. 1970. Recent advances in popular breeding. Int. Rev. Forest. Res.3: 1–67.

    Google Scholar 

  • Mukerji, S. K. 1936a. Contributions to the autecology ofMercurialis perennis L. J. Ecol.24: 38–81.

    Article  CAS  Google Scholar 

  • —. 1936b. Contributions to the autecology ofMercurialis perennis L. Parts IV and V. J. Ecol.24: 317–339.

    CAS  Google Scholar 

  • Mulcahy, D. L. 1968. The significance of delayed pistillate anthesis inSilene alba. Bull. Torrey Bot. Club95: 135–139.

    Article  Google Scholar 

  • Müller, H. 1873. Ground Ivy. Nature8: 161.

    Article  Google Scholar 

  • —. 1883. The fertilisation of flowers. Macmillan, London. 669 pp.

    Google Scholar 

  • Newton, M. E. 1972. Sex-ratio differences inMnium hornum Hedw. and M.undulatum Sw. in relation to spore germination and vegetative regeneration. Ann. Bot. (London)36: 163–178.

    Google Scholar 

  • Nigtevecht, G. van. 1966. Genetic studies in dioeciousMelandrium. I. Sexlinked and sex-influenced inheritance inMelandrium album andMelandrium dioicum. Genetica37: 281–306.

    Article  Google Scholar 

  • Owen, D. B. 1962. Handbook of statistical tables. Pergamon Press, London. 580 pp.

    Google Scholar 

  • Pauley, S. S. 1949. Forest-tree genetics research:Populus L. Econ. Bot.3: 299–330.

    Google Scholar 

  • Percival, M. 1965. Floral biology. Pergamon Press, London. 243 pp.

    Google Scholar 

  • Plack, A. 1957. Sexual dimorphism in Labiatae. Nature180: 1218–1219.

    Article  Google Scholar 

  • —. 1958. Effect of gibberellic acid on corolla size. Nature182: 610.

    Article  CAS  Google Scholar 

  • Ponomarev, A. N., andE. I. Demynova. 1975. On the study of gynodioecy in plants (In Russian). Bot. Zurn. SSSR60: 3–15. (Translated by New Zealand Department of Internal Affairs).

    Google Scholar 

  • Putwain, P. D., andI. L. Harper. 1972. Studies in the dynamics of plant populations. V. Mechanisms governing the sex ratio inRumex acetosa andR. acetosella. J. Ecol.60: 113–129.

    Article  Google Scholar 

  • Rangasamy, S. R. S., andP. Devasahayam. 1972. Cytology and sex determination in palmyrah palm (Borassus flabellifer Linn.) Cellule69: 127–134.

    Google Scholar 

  • Rathore, J. S. 1969. Distribution patterns of male and female plants ofDiospyros melanoxylon Roxb. in the forests of Sagar, M.P. Indian Forester96: 701.

    Google Scholar 

  • Richards, A. I. 1975. Notes on the sex and age ofPotentilla fruticosa L. in Upper Teesdale. Trans. Nat. Hist. Soc. Northumbria42: 85–97.

    Google Scholar 

  • Robbins, W. W., andH. A. Jones. 1925. Secondary sex characters inAsparagus officinalis L. Hilgardia1: 183–202.

    Google Scholar 

  • ——, 1926. Sex as a factor in growing asparagus. Proc. Amer. Soc. Hort. Sci.23: 19–23.

    Google Scholar 

  • ——. 1928. Further studies on asparagus. Proc. Amer. Soc. Hort. Sci.25: 13–16.

    Google Scholar 

  • Rosa, J. T. 1925. Sex expression in spinach. Hilgardia1: 259–274.

    Google Scholar 

  • Rychlewski, J., andK. Zarzycki. 1975. Sex ratio in seeds ofRumex acetosa L. as a result of sparse and abundant pollination. Acta Biol. Cracov. Ser., Bot.18: 101–114.

    Google Scholar 

  • Salmon, E. S., andH. Wormald. 1921. A study of the variation in seedings of the wild hop (Humulus lupulus L.). J. Genet.11: 241–267.

    Google Scholar 

  • Schaffner, J. H. 1919. Complete reversal of sex in hemp. Science50: 311–312.

    Article  PubMed  CAS  Google Scholar 

  • —. 1927. Sex-limited characters in heterosporous sporophytes. Ohio J. Sci.27: 19–24.

    Google Scholar 

  • Shaw, R. F., andJ. D. Mohler. 1953. The selective significance of the sex ratio. Amer. Naturalist87: 337–342.

    Article  Google Scholar 

  • Sneep, Ir. J. 1962. Spinat.In: Manual of Plant Breeding, Vol. 6, Breeding of legumes and fruits, viniculture and silviculture, ed. by H. Kappert and W. Rudorf. Parey, Berlin and Hamburg, pp. 227–253.

    Google Scholar 

  • Snow, A. G. 1942. Sex and vegetative propagation. J. Forest (Washington)40: 807–808.

    Google Scholar 

  • Spieth, P. T. 1974. Theoretical considerations of unequal sex ratios. Amer. Naturalist108: 837–849.

    Article  Google Scholar 

  • Stern, K., andL. Roche. 1974. Genetics of forest ecosystems. Chapman and Hall, London. 330 pp.

    Google Scholar 

  • Suto, T., andS. Sugiyama. 1960. Sex expression and determination in spinach. I. Growth habit and its sex-limited inheritance. Jap. J. Bot.17: 163–176.

    Google Scholar 

  • Styles, B. T. 1972. The flower biology of the Meliaceae and its bearing on tree breeding. Silvae Genet.21: 175–182.

    Google Scholar 

  • Tutin, T. G., et al., eds. 1964. Flora Europaea Vol. I. Cambridge University Press, Cambridge. 464 pp.

    Google Scholar 

  • Ueberfeld, M. 1926. Beiträge zur Kenntnis des sexuellen Dimorphisms der Restionaceen. Biol. Jahrb. Syst.60: 175–206.

    Google Scholar 

  • Vaarama, A., andO. Jääskeläinen. 1967. Studies on gynodioecism in the Finnish populations ofGeranium silvaticum L. Ann. Acad. Sci. Fenn., Ser.108: 3–39.

    Google Scholar 

  • Valdeyron, G. 1967. Sur le système génétique du figuierFicus carica L. Essai d’interprétation évolutive. Annales de l’institut National Agronomique5: 1–167.

    Google Scholar 

  • Valentine, D. H. 1939. The butterbur. Discovery, New Ser.11: 246–250.

    Google Scholar 

  • Vernet, P. 1971a. Quelques données sur la biologied’Asparagus acutifolius L. Naturalia Monspel., Sér Bot.22: 177–200.

    Google Scholar 

  • —. 1971b. La proportion des sexes chezAsparagus acutifolius L. Bull. Soc. Bot. Fr. 1971,118: 345–358.

    Google Scholar 

  • Webb, C. J. 1976. Flowering periods in the gynodioecious speciesGingidia decipiens (Umbelliferae). New Zealand J. Bot.14: 207–210.

    Google Scholar 

  • Westergaard, M. 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet.9: 217–281.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G. C. 1966. Adaptation and natural selection. Princeton University Press, Princeton. 307 pp.

    Google Scholar 

  • Willis, I. C. 1892. On gynodioecism in the Labiatae. Proc. Cambridge Philos. Soc.7: 348–351.

    Google Scholar 

  • Yampolsky, C. 1920. The occurrence and inheritance of sex intergradation in plants. Amer. J. Bot.7: 21–38.

    Article  Google Scholar 

  • Yeager, A. F., andD. H. Scott. 1938. Studies of mature asparagus plantings with special reference to sex survival and rooting habits. Proc. Amer. Soc. Hort. Sci.36: 513–514.

    Google Scholar 

  • Zarzycki, K., andJ. Rychlewski. 1972. Sex ratios in Polish natural populations and in seedling samples ofRumex acetosa L. andR. thyrsiflorus Fing. Acta Biol. Cracov., Ser. Bot.15: 135–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, D.G., Webb, C.J. Secondary sex characters in plants. Bot. Rev 43, 177–216 (1977). https://doi.org/10.1007/BF02860717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860717

Keywords

Navigation