Skip to main content
Log in

Soil microbial community of abandoned sand fields

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Microbiological evaluation of sandy grassland soils from two different stages of secondary succession on abandoned fields (4 and 8 years old fallow) was carried out as a part of research focused on restoration of semi-natural vegetation communities inKiskunság National Park in Hungary. There was an apparent total N and organic C enrichment, stimulation of microbial growth and microbial community structure change on fields abandoned by agricultural practice (small family farm) in comparison with native undisturbed grassland. A successional trend of the microbial community was found after 4 and 8 years of fallow-lying soil. It consisted in a shift of r-survival strategy to more efficient C economy, in a decrease of specific respiration and metabolic activity, forced accumulation of storage bacterial compounds and increased fungal distribution. The composition of microbial phospholipid fatty acids mixture of soils abandoned at various times was significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato M., Ladd J.N.: Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soil.Soil Biol. Biochem. 20, 107–114 (1988).

    Article  CAS  Google Scholar 

  • Anderson J.M.: Spatio-temporal effects on invertebrates on soil processes.Biol. Fertil. Soils 7, 216–227 (1988).

    Google Scholar 

  • Atlas R.M., Bartha R.:Microbial Ecology. Fundamentals and Applications. Benjamin/Cummings, New York 1993.

    Google Scholar 

  • Bardgett R.M., Hobbs P.J., Frostegård Å.: Changes in the structure of soil microbial communities following reductions in the density of management of an upland.Biol. Fertil. Soils 22, 261–264 (1996).

    Article  Google Scholar 

  • Bremner J.M.: Inorganic forms of nitrogen, pp. 1179–1237 in C.A. Black (Ed.):Methods of Soil Analysis, Part 2—Agronomy 9. American Society of Agronomy, Madison (WI, USA) 1965.

    Google Scholar 

  • Dawes E.A., Senior P.J.: The role and regulation of energy reserve polymers in micro-organisms.Adv. Microb. Physiol. 10, 135–266 (1973).

    CAS  PubMed  Google Scholar 

  • Elhottová D., Tříska J., Šantrůčková H., Květoň J., Šantrůček J., Šimková M.: Rhizosphere microflora of winter wheat plants cultivated under elevated CO2.Plant & Soil 197, 251–259 (1997).

    Article  Google Scholar 

  • Elhottová D., Tříska J., Petersen S.O., Šantrůčková H.: Analysis of poly-β-hydroxybutyrate in environmental samples by GC-MS/MS.Fresenius J. Anal. Chem. 367, 157–164 (2000).

    Article  PubMed  Google Scholar 

  • Erwin J.A.: Fatty acids in eukaryotic microorganisms, pp. 41–143 in J.A. Erwin (Ed.):Lipids and Biomembranes of Eukaryotic Microorganisms. Academic Press, New York 1973.

    Google Scholar 

  • Federle T.W.: Microbial distribution in soil—new techniques, pp. 493–498 in F. Megusar, M. Gantar (Eds):Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana (Slovenia) 1986.

    Google Scholar 

  • Frostegård Å., Tunlid A., Bååth E.: Phospholipid fatty acids composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Appl. Environ. Microbiol. 59, 3605–3617 (1993).

    PubMed Central  PubMed  Google Scholar 

  • Grayston S.J., Vaughan D., Jones D.: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability.Appl. Soil Ecol. 5, 29–56 (1996).

    Article  Google Scholar 

  • Hansson M., Fogelfors H.: Management of permanent setaside on arable land in Sweden.J. Appl. Ecol. 35 758–771 (1998).

    Article  Google Scholar 

  • Hršelová H., Chvátalová I., Vosátka M., Klír J., Gryndler M.: Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprophytic microfungi with soil carbon, nitrogen and phosphorus.Folia Microbiol. 44, 683–688 (1999).

    Article  Google Scholar 

  • Insam H., Domsch K.H.: Relationship between soil organic biomass on chronosequences of reclamation sites.Microb. Ecol. 15, 177–188 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Klein D.A., McLendon T., Paschke M.W., Redente E.F.: Saprophytic fungal-bacterial biomass variations in successional communities of a semiarid steppe ecosystem.Biol. Fertil. Soils 19, 253–256 (1995).

    Article  Google Scholar 

  • Klein D.A., McLendon T., Paschke M.W., Redente E.F.: Nitrogen availability and fungal-bacterial responses in successional semiarid steppe soils.Arid Soil Res. Rehabil. 10, 321–332 (1996).

    Article  CAS  Google Scholar 

  • Klein D.A., Paschke M.W., Redente E.F.: Assessment of fungal-bacterial development in successional semi-arid grassland by direct integration of chloroform-fumigation extraction (FE) and microscopically derived data.Soil Biol. Biochem. 30, 573–581 (1998).

    Article  CAS  Google Scholar 

  • Kowalchuk G.A., Stienstra A.W., Heilig G.H., Stephen J.R., Woldendorp J.W.: Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands.Environ. Microbiol. 2, 99–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt R.M.: Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173–199 in M. Goodefellow, D.E. Minnikin (Eds).Chemical Methods in Bacterial Systematics. Academic Press, London 1985.

    Google Scholar 

  • Malý S., Korthals G.W., Van Dijk C., Van der Putten W.H., De Boer W.: Effect of vegetation manipulation of abandoned arable land soil microbial properties.Biol. Fertil. Soils 31, 121–127 (2000).

    Article  Google Scholar 

  • O’Leary W.M., Wilkinson S.G.: Gram-positive bacteria, pp. 117–201 in C. Ratlege, S.G. Wilkinson (Eds):Microbial Lipids, Vol. 1. Academic Press, London 1988.

    Google Scholar 

  • Paschke M., McLendon T., Redente E.F.: Nitrogen availability and old-field succession in a shortgrass steppe.Ecosystems 3, 144–158 (2000).

    Article  CAS  Google Scholar 

  • Post W.M., Kwon K.C.: Soil carbon sequestration and land-use change: processes and potential.Global Change Biol. 6, 317–327 (2000).

    Article  Google Scholar 

  • Šantrůčková H.: Microbial biomass, activity and respiration in relation to secondary succession.Pedobiologia 36, 341–350 (1992).

    Google Scholar 

  • Scheu S.: Changes in microbial nutrient status during secondary succession and its modification by earthworms.Oecologia 84, 351–358 (1990).

    Article  Google Scholar 

  • Schnürer J., Rosswall T.: Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter.Appl. Environ. Microbiol. 43, 1256–1261 (1982).

    PubMed Central  PubMed  Google Scholar 

  • Semenov A. M., Hanzlíková A., Jandera A.: Quantitative estimation of poly-3-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria.Folia Microbiol. 34, 267–270 (1989).

    Article  CAS  Google Scholar 

  • Szili-Kovács T., Halassy M., Török K.: Restoration of sandy grassland through the immobilisation of soil nitrogen—I. Laboratory incubation experiments.Agrokémia és Talajtan 49, 491–504 (2000).

    Google Scholar 

  • Tilman D.: Nitrogen-limited growth in plants from different successional stage.Ecology 67, 555–563 (1986).

    Article  Google Scholar 

  • Török K., Szili-Kovács T., Halassy M., Tóth T., Hayek Z., Paschke M.W., Wardell L.J.: Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland.Appl. Veget. Sci. 3, 7–14 (2000).

    Article  Google Scholar 

  • Vance E.D., Brookes P.C., Jenkinson D.S.: An extraction method for measuring soil microbial biomass-C.Soil Biol. Biochem. 19, 703–707 (1987).

    Article  CAS  Google Scholar 

  • Walkley A., Black I.A.: An examination of the Degtjareff method for measuring soil organic matter and proposed modification of the chromic acid titration method.Soil Sci. 37, 29–38 (1934).

    Article  CAS  Google Scholar 

  • Wardle D.A., Ghani A.: A critique of the microbial metabolic quotient (q CO 2) as a bioindicator of disturbance and ecosystem development.Soil Biol. Biochem. 27, 1601–1610 (1995).

    Article  CAS  Google Scholar 

  • Whang K., Hattori T.: Oligotrophic bacteria from rendzina forest soil.Antonie van Leeuwenhoek 54, 19–36 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S.G.: Gram-negative bacteria, pp. 299–488 in C. Ratlege, S.G. Wilkinson (Eds):Microbial Lipids, Vol. 1. Academic Press, London 1988.

    Google Scholar 

  • Zak D.R., Grigal D.F., Gleeson D.F., Tilman D.: Carbon and nitrogen cycling during old-field succession: constraints of plant and microbial biomass.Biogeochemistry 11, 111–129 (1990).

    Article  Google Scholar 

  • Zelles L., Bai Q.Y., Beck T., Beese F.: Signature fatty acids in the phospholipids and lipopolysaccharide as indicators of microbial biomass and community structure in agricultural soils.Soil Biol. Biochem. 24, 317–323 (1992).

    Article  CAS  Google Scholar 

  • Zelles L., Bai Q.Y., Ma R.X., Rackwitz R., Winter K., Beese F.: Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils.Soil Biol. Biochem. 26, 439–446 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Elhottová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elhottová, D., Szili-Kovács, T. & Tříska, J. Soil microbial community of abandoned sand fields. Folia Microbiol 47, 435–440 (2002). https://doi.org/10.1007/BF02818704

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818704

Keywords

Navigation