Skip to main content
Log in

Mushy zone modeling with microstructural coarsening kinetics

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Marsh: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1989.

    Google Scholar 

  2. S.P. Marsh and M.E. Glicksman: inModeling and Control of Casting and Welding Processes III, S. Kou and R. Mehrabian, eds., TMS, Warrendale, PA, 1986, p. 579.

    Google Scholar 

  3. E. Rubinstein, M.E. Glicksman, B.W. Mangum, Q.T. Fang, and N.B. Singh:J. Cryst. Growth, 1988, vol. 89, p. 101.

    Article  CAS  Google Scholar 

  4. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  5. D.R.H. Jones:Phil. Mag., 1973, vol. 27, p. 569.

    Article  CAS  Google Scholar 

  6. S.P. Marsh, M.E. Glicksman, and D.I. Zwillinger: inModeling and Control of Casting and Welding Processes IV, A.F. Giamei and G.J. Abbaschian, eds., TMS, Warrendale, PA, 1988, p. 15.

    Google Scholar 

  7. L.A. Meloro: M.S. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1988.

    Google Scholar 

  8. P.W. Voorhees:Metall. Trans. A, 1990, vol. 21A, pp. 27–37.

    CAS  Google Scholar 

  9. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 239, pp. 1504–11.

    CAS  Google Scholar 

  10. R. Kuklinski and R.N. Smith: inHeat Transfer in Manufacturing and Materials Processing, R.K. Shah, ed., ASME, New York, NY, 1989, vol. HTD-113, pp. 55–61.

    Google Scholar 

  11. T.W. Clyne and W. Kurz:Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  12. R. Kuklinski: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1990.

    Google Scholar 

  13. K.P. Young and D.H. Kirkwood:Metall. Trans. A, 1975, vol. 6A, pp. 197–205.

    Google Scholar 

  14. S.C. Hardy and P.W. Voorhees:Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    CAS  Google Scholar 

  15. C.H. Kang and D.N. Yoon:Metall. Trans. A, 1981, vol. 12A, pp. 65–69.

    Google Scholar 

  16. T. Courtney: University of Virginia, Charlottesville, VA, private communication, 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glicksman, M.E., Smith, R.N., Marsh, S.P. et al. Mushy zone modeling with microstructural coarsening kinetics. Metall Trans A 23, 659–667 (1992). https://doi.org/10.1007/BF02801183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801183

Keywords

Navigation