Skip to main content
Log in

Pyridoxylated Polymerized Hemoglobin Solution Processing

Interest of a Membrane Molecular Fractionation Step

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glutaraldehyde hemoglobin polymerization gives too many high polymers, resulting in a too viscous solution. We describe here an alternate method leading to superior results, as compared to the classical one. This method includes a molecular fractionation step using a tangential flow ultrafiltration that secondarily lowers the unpolymerized tetramer’s content of a mildly polymerized, pyridoxylated hemoglobin solution (Pyr-Poly Hb). This leads to an adequately polymerized product with a lesser high polymer content, implying a lower viscosity. We thus obtain a pyridoxylated, polymerized molecular fractionated solution presenting suitable features as a blood substitute: A 7.5 g% hemoglobin 2 g% albumin solution had a 16% unpolymerized tetramer’s ratio, a 1.8 mPas viscosity, a P50 of 2.8 kPa, a Hill coefficient of 2.1, a binding coefficient of 1.3 mL/g, a colloid osmotic pressure of 2.4 kPa, and a methemoglobin concentration of 3% Male Sprague-Dawley rats undergoing an isovolumic blood exchange with this Pyr-Poly Hb solution, down to a 2% hematocrit, present a mean survival time of 20 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dudziak, R., and Bonhard, K. (1980),Anaesthesist 29, 181.

    CAS  Google Scholar 

  2. DeVenuto, F., and Zegna, A. (1982),J. Surg. Res. 34, 205.

    Article  Google Scholar 

  3. Kothe, N., Eichentopf, B., and Bonhard, K., (1985)Surg. Gynecol. Obstet. 161, 563.

    CAS  Google Scholar 

  4. Benesch, R. E., Benesch, R., Renthal, R. D., and Maeda, N. (1972),Biochemistry 19, 3576.

    Article  Google Scholar 

  5. Kaplan, J. C. (1965),Rev. Fr. Etudes Clin. et Biol. 10, 856.

    CAS  Google Scholar 

  6. Duvelleroy, M. A., Buckles, R. G., Rosenkaimer, S., Tung, C., and Laver, M. B. (1970),J. Appl. Physiol. 28, 227.

    CAS  Google Scholar 

  7. Teisseire, B., Teisseire, L., Lautier, A., Herigault, R., and Laurent, D. (1975),Bull. Physiopathol. Resp. 11, 837–851.

    CAS  Google Scholar 

  8. DeVenuto, F., and Zegna, A. (1983), inAdvances in Blood Substitute Research, Bolin and Geyer, eds., Alan Liss, New York, NY, pp. 29–39.

    Google Scholar 

  9. Sehgal, L. R., Rosen, A. L., Gould, S. A., Sehgal, H. L., and Moss, G. S. (1983).Transfusion 23, 158.

    Article  CAS  Google Scholar 

  10. Keipert, P. E., and Chang, T. M. S. (1984),Applied Biochem. Biotech. 19, 133.

    Article  Google Scholar 

  11. Monsan, P., Puzo, G., and Mazarguil, H. (1975),Biochimie 57, 1281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clerc, Y., Dubos, M., Bihoreau, N. et al. Pyridoxylated Polymerized Hemoglobin Solution Processing. Appl Biochem Biotechnol 14, 241–251 (1987). https://doi.org/10.1007/BF02800311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02800311

Keywords

Navigation