Skip to main content
Log in

Toxic levels of selenium in enzymes and selenium uptake in tissues of a marine fish

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Acute toxicity of selenium as selenite inZosterisessor ophiocephalus by ip injection was studied. The 50% lethal dose and 50% lethal time were measured to be 0.29 ppm and 96 h, respectively. Se concentrations in liver, gill, skin and muscle, and Cyt. P450 level, Se-GPx, and Total GPx enzyme activities in liver were also assessed at different doses and times after injection. Starting at 0.3 ppm injected dose, enzyme activities and Se concentration in tissues but not in muscle, showed significant differences from the control group. A threshold behavior was inferred. Normal conditions of enzyme activities and Se concentration in tissues were restored about 1 wk after injection. Biological elimination half-lives were about 2 d for liver and gill, and 5 d for skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase.Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  2. P. M. Cumbie and S. L. Van Horn, Selenium accumulation associated with fish mortality and reproductive failure,Proc. A. Conf. S.E. Ass. Fish Wildl. Agencies 32, 612–624 (1978).

    Google Scholar 

  3. R. S. Ogle and A. W. Knight, Effects of elevated foodborne selenium on growth and reproduction of the fathead minnow (Pimephales promelas),Arch. Environ. Contam. Toxicol. 18, 795–803 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. H. M. Ohlendorf, D. J. Hoffman, M. K. Saiki, and T. W. Aldrich, Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drainwater,Sci. Total Environ. 52, 49–63 (1986).

    Article  CAS  Google Scholar 

  5. P. Kiffney and A. Knight, The toxicity and bioaccumulation of selenate, selenite and seleno-L-methionine in the cyanobacteriumAnabaena flos aquae, Arch. Environ. Contam. Toxicol. 19, 488–495 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. W. J. Adams and H. E. Johnson, Selenium: a hazard assessment and a water quality criterion calculation, inAquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, D. R. Branson and K. L. Dickson, eds., American Society for Testing and Materials, pp. 124–137 (1981).

  7. P. V. Hodson, D. J. Spry, and B. R. Blunt, Effect on rainbow trout (Salmo gairdneri) of a chronic exposure to waterborne selenium,Can. J. Fish. Aquat: Sci. 37, 233–240 (1980).

    Article  CAS  Google Scholar 

  8. J. W. Hilton, P. V. Hodson, and S. J. Slinger, Absorption, distribution, half-life and possible routes of elimination of dietary selenium in juvenile rainbow trout (Salmo gairdneri),Comp. Biochem. Physiol. 71C, 49–55 (1982).

    CAS  Google Scholar 

  9. S. J. Hamilton and K. J. Buhl, Acute toxicity of boron, molybdenum, and selenium to fry of Chinook salmon and Coho salmon,Arch. Environ. Contam. Toxicol. 19, 366–373 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. K. M. Kleinow and A. S. Brooks, Selenium compounds in the fathead minnow (Pimephales promelas) I. Uptake, distribution, and elimination of orally administered selenate, selenite and L-selenomethionine,Comp. Biochem. Physiol. 83C, 61–69 (1986).

    CAS  Google Scholar 

  11. K. M. Kleinow and A. S. Brooks, Selenium compounds in the fathead minnow (Pimephales promelas) II. Quantitative approach to gastrointestinal absorption, routes of elimination and influence of dietary pretreatment.Comp. Biochem. Physiol. 83C, 71–76 (1986).

    CAS  Google Scholar 

  12. R. W. Estabrook and J. Werringloer, The measurements of difference spectra: application to the cytochrome of microsomes, inMethods in Enzymology, S. Fleisher and L. Packer, eds., Academic, NY, pp. 212–220 (1978).

    Google Scholar 

  13. A. L. Tappel, Glutathione peroxidase and hydroperoxidases, inMethods in Enzymology, S. Fleischer, and L. Packer, eds., pp. 506–517, Academic, New York (1978).

    Google Scholar 

  14. F. Ursini, M. Majorino, M. Valente, L. Ferri, and C. Gregolin, Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidilcholine hydroperoxides,Biochem. Biophys. Acta 710, 197–211 (1982).

    PubMed  CAS  Google Scholar 

  15. R. Moro, G. Gialanella, Y. X. Zhang, L. Perrone, and R. Di Toro, Trace elements in full-term neonate hair,J. Trace Elem. Electrolytes Health Dis. 6, 27–31 (1992).

    PubMed  CAS  Google Scholar 

  16. G. P. Buso, P. Colautti, G. Moschini, H. Xusheng, and B. M. Stievano, High sensitivity PIXE determination of selenium in biological samples using a preconcentration technique,Nucl. Instr. Meth. B3, 177–180 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallandini, L., Cecchi, R., De Boni, S. et al. Toxic levels of selenium in enzymes and selenium uptake in tissues of a marine fish. Biol Trace Elem Res 51, 97–106 (1996). https://doi.org/10.1007/BF02790152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790152

Index Entries

Navigation