Skip to main content
Log in

Packaged DNA

An elastic model

  • Review
  • Published:
Cell Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 1986

Abstract

We review and deepen a theory of elastic bending of DNA on a persistence length scale. In a regime of extensive charge neutralization the axis of the double helix is elastically unstable when straight. Its stable bent conformation allows nucleation of DNA toruses and in principle could direct the supercoiled (solenoid) form of a polynucleosome. The Euler theory of elastic instability of macroscopic rods gives a partial description of the intrinsic ability of DNA to form locally stable bends. A different, quasi-Eulerian theory can be based on what is probably the dominant bending mechanism of DNA in solution—flexible kinking at the sites of open base pairs. This predictive theory is in quantitative agreement with the observed value (about 16 nm) for the minimum radius of torus holes. Stability of the inner torus ring is achieved when DNA phosphate groups are about 90% neutralized by trivalent cations, another prediction that is consistent with the observed formation of toruses in these conditions. The predicted stable radius of curvature of charge-neutralized DNA is also equal to the radial dimension of a maximally contracted polynucleosome supercoil as measured by neutron scattering (17 nm), but further experimental investigation of the geometrical disposition of the spacer DNA regions in the solenoid will be necessary to rule out the possibility of accidental agreement for this complex system. We stress again the experimental reality and probable importance of open base pairs in the equilibrium solution conformation of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleinschmidt, A. K., Lang, D., Jacherts, D., and Zahn, R. K. (1962),Biochim. Biophys. Acta 61, 857.

    PubMed  CAS  Google Scholar 

  2. Riemer, S. C., and Bloomfield, V. A. (1978),Biopolymers 17, 785.

    Article  PubMed  CAS  Google Scholar 

  3. Shore, D., Langowski, J., and Baldwin, R. L. (1981),Proc. Natl. Acad. Sci. USA 78, 4833.

    Article  PubMed  CAS  Google Scholar 

  4. McGhee, J. D., and Felsenfeld, G. (1980),Ann. Rev. Biochem. 49, 1115.

    Article  PubMed  CAS  Google Scholar 

  5. Manning, G. S. (1978),Quart. Revs. Biophys. 11, 179.

    Article  CAS  Google Scholar 

  6. Manning, G. S. (1979),Biopolymers 18, 2929.

    Article  PubMed  CAS  Google Scholar 

  7. Manning, G. S. (1980),Biopolymers 19, 37.

    Article  PubMed  CAS  Google Scholar 

  8. Manning, G. S. (1981),Biopolymers 20, 1261.

    Article  CAS  Google Scholar 

  9. Manning, G. S. (1981),Biopolymers 20, 1751.

    Article  CAS  Google Scholar 

  10. Manning, G. S. (1981),Biopolymers 20, 2337.

    Article  CAS  Google Scholar 

  11. Manning, G. S. (1982),Comments Mol. Cell. Biophys. 1, 311.

    Google Scholar 

  12. Manning, G. S. (1983),Biopolymers 22, 689.

    Article  PubMed  CAS  Google Scholar 

  13. Manning, G. S., inStructure and Dynamics: Nucleic Acids and Proteins, Clementi, E., and Sarma, R. H., eds., Adenine Press, NY, 1983.

    Google Scholar 

  14. Bloomfield, V. A., Crothers, D. M., and Tinoco, Jr., I.,Physical Chemistry of Nucleic Acids, Harper & Row, New York, 1974.

    Google Scholar 

  15. Landau, L. D., and Lifshitz, E. M.,Theory of Elasticity, Pergamon Press, Oxford, 1970.

    Google Scholar 

  16. Love, A. E. H.,A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.

    Google Scholar 

  17. Shore, D., and Baldwin, R. L. (1983),J. Mol. Biol. 170, 957.

    Article  PubMed  CAS  Google Scholar 

  18. Shore, D., and Baldwin, R. L. (1983),J. Mol. Biol. 170, 983.

    Article  PubMed  CAS  Google Scholar 

  19. Horowitz, D. S., and Wang, J. C. (1984),J. Mol. Biol. 173, 75.

    Article  PubMed  CAS  Google Scholar 

  20. Post, C. B. (1983),Biopolymers 76, 1087.

    Article  Google Scholar 

  21. Le Bret, M. (1982),J. Chem. Phys. 76, 6243.

    Article  Google Scholar 

  22. Fixman, M. (1982),J. Chem. Phys. 76, 6346.

    Article  CAS  Google Scholar 

  23. Manning, G. S. (1969),J. Chem. Phys. 51, 3249.

    Article  CAS  Google Scholar 

  24. Landau, L. D., and Lifshitz, E. M.,Statistical Physics, Pergamon Press, London, 1958.

    Google Scholar 

  25. Frontali, C., Dore, F., Ferrauto, A., Gratton, E., Bettini, A., Pozzan, M. R., and Valdevit, E. (1979),Biopolymers 18, 1353.

    Article  PubMed  CAS  Google Scholar 

  26. Pfeuty, P., Velasco, R. M., and de Gennes, P. G. (1977),J. Phys. (Paris) Lett. 38, 5.

    CAS  Google Scholar 

  27. Englander, S. W., and Kallenbach, N. R. (1984),Quart, Revs. Biophys. 17, 1.

    Google Scholar 

  28. Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R. E. (1980),Nature 287, 755.

    Article  PubMed  CAS  Google Scholar 

  29. Gosule, L. C., and Schellman, J. A. (1978),J. Mol. Biol. 121, 311.

    Article  PubMed  CAS  Google Scholar 

  30. Thomas, T. J., and Bloomfield, V. A. (1983),Biopolymers 22, 1097.

    Article  PubMed  CAS  Google Scholar 

  31. Yen, W. S., Rhee, K. W., and Ware, B. R. (1983),J. Phys. Chem. 87, 2148.

    Article  CAS  Google Scholar 

  32. Widom, J., and Baldwin, R. L. (1980),J. Mol. Biol. 144, 431.

    Article  PubMed  CAS  Google Scholar 

  33. Widom, J., and Baldwin, R. L. (1983),Biopolymers 22, 1595.

    Article  PubMed  CAS  Google Scholar 

  34. Benbasat, J. A.,Biochemistry.

  35. Chattoraj, D. K., Gosule, L. C., and Schellman, J. A. (1978),J. Mol. Biol. 121, 327.

    Article  PubMed  CAS  Google Scholar 

  36. Ruben, G. C., Marx, K. A., and Reynolds, T. C.,39th Ann. Proc. Electron Microscopy Soc. Amer., Atlanta, Georgia, 1981, G. W. Bailey, ed.

  37. Marx, K. A., and Ruben, G. C. (1983),Nucleic Acids Res. 11, 1839.

    Article  PubMed  CAS  Google Scholar 

  38. Marx, K. A., and Ruben, G. C., inThe Molecular Basis of Cancer (Rein, R. R., ed.), Liss, New York, in press.

  39. Castleman, H., and Erlanger, B. F. (1983),Cold Spring Harbor Symp. Quant. Biol. 47, 133.

    PubMed  Google Scholar 

  40. Marx, K. A., and Reynolds, T. C. (1982),Proc. Natl. Acad. Sci. USA 79, 6484.

    Article  PubMed  CAS  Google Scholar 

  41. Marx, K. A., and Reynolds, T. C. (1983),Biochim. Biophys. Acta 741, 279:

    PubMed  CAS  Google Scholar 

  42. Grosberg, A. Yu. (1979),Biofizica 24, 32.

    CAS  Google Scholar 

  43. Bina, M., Sturtevant, J. M., and Stein, A. (1980),Proc. Natl. Acad. Sci. USA 77, 4044.

    Article  PubMed  CAS  Google Scholar 

  44. McGhee, J. D., and Felsenfeld, G. (1979),Proc. Natl. Acad. Sci. USA 76, 2133.

    Article  PubMed  CAS  Google Scholar 

  45. McGhee, J. D., and Felsenfeld, G. (1982),J. Mol. Biol. 158, 685.

    Article  PubMed  CAS  Google Scholar 

  46. McGhee, J. D., and Felsenfeld, G. (1980),Nucleic Acids Res. 8, 2751.

    Article  PubMed  CAS  Google Scholar 

  47. Simpson, R. T. (1978),Biochemistry 17, 5524.

    Article  PubMed  CAS  Google Scholar 

  48. Suau, P., Bradbury, E. M., and Baldwin, J. P. (1979),Eur. J. Biochem. 97, 593.

    Article  PubMed  CAS  Google Scholar 

  49. Renz, M., Nehls, P., and Hozier, J. (1977),Cold Spring Harbor Symp. Quant. Riol. 42, 245.

    Google Scholar 

  50. Renz, M., and Day, L. A. (1976),Biochemistry 15, 3220.

    Article  PubMed  CAS  Google Scholar 

  51. Thomas, J. D., and Butler, P. J. G. (1980),J. Mol. Biol. 144, 89.

    Article  PubMed  CAS  Google Scholar 

  52. Butler, P. J. G., and Thomas, J. D. (1980),J. Mol. Biol. 140, 505.

    Article  PubMed  CAS  Google Scholar 

  53. Belmont, A., and Nicolini, C. (1981),J. Theoret. Biol. 90, 169.

    Article  CAS  Google Scholar 

  54. Thoma, F., Losa, R., and Koller, T. (1983),J. Mol. Biol. 167, 619.

    Article  PubMed  CAS  Google Scholar 

  55. Cole, R. D., Lawson, G. M., and Hsiang, M. W. (1977),Cold Spring Harbor Symp. Quant. Biol. 42, 253.

    Google Scholar 

  56. Finch, J. T., and Klug, A. (1976),Proc. Natl. Acad. Sci. USA 73, 1897.

    Article  PubMed  CAS  Google Scholar 

  57. Sperling, L., and Klug, A. (1977),J. Mol. Biol. 112, 253.

    Article  PubMed  CAS  Google Scholar 

  58. Schurr, J. M. (1984),Biopolymers 23, 191.

    Article  PubMed  CAS  Google Scholar 

References

  1. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D., and Klug, A. (1984),Nature 311, 532.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02788462.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, G.S. Packaged DNA. Cell Biophysics 7, 57–89 (1985). https://doi.org/10.1007/BF02788639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788639

Keywords

Navigation