Skip to main content
Log in

Partial Characterization of a Human ZincDeficiency Syndrome by Differential Display

  • Accelerated Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of the acrodermatitis enteropathica mutation (AE) on gene expression was investigated using differential display. Two differentially expressed cDNAs were partially characterized. The NA8 cDNA (HT11A anchor and HAP 8 random primer pair) was expressed in greater quantity in normal fibroblasts, was 249 bp, and hybridized to three mRNA species (2 kb, 1 kb, 0.8 kb). Northern blot analysis indicated that the relative amounts of the AE mRNA species were reduced by 73%, 75%, and 52%, respectively. The cDNA sequence exhibited 92–93% homology to the human cytochrome oxidase subunit II, as analyzed through the GenBank database. The AEG4 cDNA species (HT11G anchor and HAP 4 random, primer pair) was expressed in greater quantity in AE fibroblasts, was 197 bp, and hybridized to two mRNA species (9 kb, 4 kb). Northern blot analysis indicated that the 9-kb mRNA species was present equally in AE and normal cells, but the 4-kb mRNA species was only present in the AE fibroblasts. The cDNA sequence exhibited 92% homology to LINE1 human retrotransposons, as analyzed through the GenBank database. The functional relationship between the mutation and the reduced expression of cytochrome oxidase subunit II is unknown at this time and needs to be addressed. The increased expression of the LINE1 element in AE fibroblasts may be indicative of an insertion mutation affecting the mRNA of a protein involved in zinc transport, a prospect which requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Coleman, Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins,Annu. Rev. Biochem. 61, 897–946 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. A. Klug and J. W. R. Schwabe, Zinc fingers,FASEB J. 9, 597–604 (1995).

    PubMed  CAS  Google Scholar 

  3. P. Csermely, M. Szamel, K. Resch, and J. Somogy, Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphoctyes,J. Biol. Chem. 263, 6487–6490 (1988).

    PubMed  CAS  Google Scholar 

  4. S. R. Hubbard, W. R. Bishop, R Kirschmeier, S. J. George, S. P. Cramer, and W. A. Hendrickson, Identification and characterization of zinc binding sites in protein kinase C,Science 254, 1776–1779 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. Z. Szallasi, K. Bogi, S. Gohari, T. Biro, P. Acs, and P. M. Blumberg, Non-equivalent roles for the first and second zinc fingers of protein kinase C-delta. Effect of their mutation on phorbol ester-induced translocation in NIH 3T3 cells,J. Biol. Chem. 271, 18,299–18,301 (1996).

    CAS  Google Scholar 

  6. P. D. Zalewski, I. J. Forbes, C. Giannakis, P. A. Cowled, and W. H. Betts, Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton,FEBS Lett. 273, 131–134 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. G. L. Johanning, J. D. Browning, D. J. Bobilya, T. L. Veum, and B. L. O’Dell, Effect of zinc deficiency on enzyme activities in rat and pig erythrocyte membranes,Proc. Soc. Exp. Biol. Med. 195, 224–229 (1990).

    PubMed  CAS  Google Scholar 

  8. W. J. Bettger and B. L. O’Dell, Physiological roles of zinc in the plasma membrane of mammalian cells,J. Nutr. Biochem. 4, 194–207 (1993).

    Article  CAS  Google Scholar 

  9. P. D. Zalewski, I. J. Forbes, and W. H. Betts, Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamide-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II),Biochem. J. 296, 403–108 (1993).

    PubMed  CAS  Google Scholar 

  10. V. Sarma, Z. Lin, L. Clark, B. M. Rust, M. Tewari, R. J. Noelle, et al., Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis,J. Biol. Chem. 270, 12,343–12,346 (1995).

    CAS  Google Scholar 

  11. R. Boyne and J. K. Chesters, Thymidine incorporation is less sensitive to lack of zinc in human than in rodent cells,Biol. Trace Element Res. 49, 119–127 (1995).

    Article  CAS  Google Scholar 

  12. J. K. Chesters, L. Petrie, and H. Vint, Specificity and timing of the Zn(2+) requirement for DNA synthesis by 3T3 cells,Exp. Cell Res. 184, 499–508 (1988).

    Article  Google Scholar 

  13. D. J. Atherton, D. P. R. Muller, P. J. Aggett, and J. T. Harries, A defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica,Clin. Sci. 56, 505–507 (1979).

    PubMed  CAS  Google Scholar 

  14. C. Y. Chang, S. J. Muga, and A. Grider, Zinc uptake into fibroblasts is inhibited by probenecid,Biochim. Biophys. Acta 1368, 1–6 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. A. Grider and E Vazquez, Nystatin affects zinc uptake in human fibroblasts,Biol. Trace Element Res. 54, 97–104 (1996).

    Article  CAS  Google Scholar 

  16. A. Grider and E. M. Young, The acrodermatitis enteropathica mutation transiently affects zinc metabolism in human fibroblasts,J. Nutr. 126, 219–224 (1996).

    PubMed  CAS  Google Scholar 

  17. A. Grider, Y. F. Lin, and S. J. Muga, Differences in the cellular zinc content and 5′ nucleotidase activity of normal and acrodermatitis enteropathica (AE) fibroblasts,Biol. Trace Element Res. 61, 1–8 (1998).

    CAS  Google Scholar 

  18. A. Grider and M. F. Mouat, The acrodermatitis enteropathica mutation affects protein expression in human fibroblasts: analysis by two-dimensional gel electrophoresis,J. Nutr. 128, 1311–1314 (1998).

    PubMed  CAS  Google Scholar 

  19. P. Liang and A. B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction,Science 257, 967–971 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. P. Liang, W. Zhu, X. Zhang, Z. Guo, R. P. O. O’Connell, L. Averboukh, et al., Differential display using one-base anchored oligo-dT primers,Nucleic Acids Res. 22, 5763–5764 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. P. Liang, L. Averboukh, and A. B. Pardee, Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization,Nucleic Acids Res. 21, 3269–3275 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. P. Liang, L. Averboukh, K. Keyomarsi, R. Sager, and A. B. Pardee, Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells,Cancer Res. 52, 6966–6968 (1992).

    PubMed  CAS  Google Scholar 

  23. P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction,Anal. Biochem. 162, 156–159 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. J. Sambrook, R. F. Fritsch, and T. Maniatis,Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  25. A. P. Feinberg and B. Vogelstein, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity,Anal. Biochem. 132, 6–13 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. D. Marchuk, M. Drumm, A. Saulino, and F. S. Collins, Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products,Nucleic Acids Res. 19, 1154 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. T. A. Link and G. Von Jagow, Zinc ions inhibit theQp center of bovine heart mitochondrialbc 1 complex by blocking a protonatable group,J. Biol. Chem. 270, 25,001–25,006 (1995).

    CAS  Google Scholar 

  28. Y. Tanaka, S. Shiozawa, I. Morimoto, and T. Fujita, Role of zinc in interleukin-2 (IL-2)-mediated T-cell activation,Scand. J. Immunol. 31, 547–552 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. K. Moulder and M. W. Steward, Experimental zinc deficiency: effects on cellular responses and the affinity of humoral antibody,Clin. Exp. Immunol. 77, 269–274 (1989).

    PubMed  CAS  Google Scholar 

  30. J. Kaplan, J. W. Hess, and A. S. Prasad, Impaired interleukin-2 production in the elderly: association with mild zinc deficiency,J. Trace Element Exp. Med. 1, 3–8 (1988).

    CAS  Google Scholar 

  31. T. M. Williams, D. Moolten, J. Burlein, J. Romano, R. Bhaerman, A. Godillot, et al, Identification of a zinc finger protein that inhibits IL-2 gene expression,Science 254, 1791–1794 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. T. M. Williams, G. Montoya, Y. Wu, R. L. Eddy, M. G. Byers, and T. B. Shows, The TCF8 gene encoding a zinc finger protein (Nil-2-a) resides on human chromosome 10pll.2,Genomics 14, 194–196 (1992).

    Article  PubMed  Google Scholar 

  33. H. H. Kazazian, Jr., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips, and S. E. Antonarakis, Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man,Nature 10, 164–166 (1988).

    Article  Google Scholar 

  34. T. Fanning and M. Singer, The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins,Nucleic Acids Res. 15, 2251–2260 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muga, S.J., Grider, A. Partial Characterization of a Human ZincDeficiency Syndrome by Differential Display. Biol Trace Elem Res 68, 1–12 (1999). https://doi.org/10.1007/BF02784392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784392

Keywords

Navigation